IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp143-147.html
   My bibliography  Save this article

Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas

Author

Listed:
  • Sánchez-Arreola, Eugenio
  • Martin-Torres, Gerardo
  • Lozada-Ramírez, José D.
  • Hernández, Luis R.
  • Bandala-González, Erick R.
  • Bach, Horacio

Abstract

The scarcity of fossil fuels, in addition to environmental damage due to fossil fuel use and exploration, promotes research into alternative energy sources such as biofuels. Biodiesel has attracted considerable attention in recent years as an alternative to fossil fuels, since it is renewable, biodegradable and non-toxic. Biodiesel can be obtained from animal fat, vegetable oils including cooking oil. In this work, a method of producing biodiesel from seed cake waste from the edible Jatropha curcas L. plant was developed. Oil extraction using hexane gave the best oil quality. Transesterifications of approximately 95% were obtained by alkali or acid catalysis, and the obtained biodiesel products were successfully corroborated with NMR techniques. Since J. curcas is a non-toxic plant, the remaining de-oiled cake was tested for its nutritional properties. Nutritional analysis showed a content of 43% and 33% of protein and carbohydrate, respectively; suggesting that this waste can be used as an attractive protein and carbohydrate source for fermentation processes and/or for formulations for animal feeding. In conclusion, this work provides evidence that the oil from an edible and non-toxic species of J. curcas is an attractive option for biodiesel production with nutritional applications and negligible wasting.

Suggested Citation

  • Sánchez-Arreola, Eugenio & Martin-Torres, Gerardo & Lozada-Ramírez, José D. & Hernández, Luis R. & Bandala-González, Erick R. & Bach, Horacio, 2015. "Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas," Renewable Energy, Elsevier, vol. 76(C), pages 143-147.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:143-147
    DOI: 10.1016/j.renene.2014.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario R. Giraldi-Díaz & Lorena De Medina-Salas & Eduardo Castillo-González & Max De la Cruz-Benavides, 2018. "Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    2. Guadalupe Pérez & Jorge Islas & Mirna Guevara & Raúl Suárez, 2019. "The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    3. Guadalupe Pérez & Jorge M. Islas-Samperio, 2021. "Sustainability Evaluation of Non-Toxic Jatropha curcas in Rural Marginal Soil for Obtaining Biodiesel Using Life-Cycle Assessment," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Roschat, Wuttichai & Siritanon, Theeranun & Yoosuk, Boonyawan & Sudyoadsuk, Taweesak & Promarak, Vinich, 2017. "Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand," Renewable Energy, Elsevier, vol. 101(C), pages 937-944.
    5. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    2. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    4. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    7. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    8. Rawat, Devendra S. & Joshi, Girdhar & Lamba, Bhawna Y. & Tiwari, Avanish K. & Kumar, Pankaj, 2015. "The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels," Energy, Elsevier, vol. 84(C), pages 643-655.
    9. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    10. Chattopadhyay, Soham & Karemore, Ankush & Das, Sancharini & Deysarkar, Asoke & Sen, Ramkrishna, 2011. "Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics," Applied Energy, Elsevier, vol. 88(4), pages 1251-1256, April.
    11. Sojung Kim & Junyoung Seo & Sumin Kim, 2024. "Machine Learning Technologies in the Supply Chain Management Research of Biodiesel: A Review," Energies, MDPI, vol. 17(6), pages 1-15, March.
    12. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    13. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    14. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    15. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    16. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    17. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    18. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    19. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    20. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:143-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.