IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2034-d234811.html
   My bibliography  Save this article

Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties

Author

Listed:
  • José Rodríguez-Fernández

    (Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain)

  • Juan José Hernández

    (Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain)

  • Alejandro Calle-Asensio

    (Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain)

  • Ángel Ramos

    (Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain)

  • Javier Barba

    (Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Industriales, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain)

Abstract

Current policies focus on encouraging the use of renewable energy sources in transport to reduce the contribution of this sector to global warming and air pollution. In the short-term, attention is focused on developing renewable fuels. Among them, the so-called advanced biofuels, including non-crop and waste-based biofuels, possess important benefits such as higher greenhouse gas (GHG) emission savings and the capacity not to compete with food markets. Recently, European institutions have agreed on specific targets for the new Renewable Energy Directive (2018/2001), including 14% of renewable energy in rail and road transport by 2030. To achieve this, advanced biofuels will be double-counted, and their contribution must be at least 3.5% in 2030 (with a phase-in calendar from 2020). In this work, the fuel properties of blends of regular diesel fuel with four advanced biofuels derived from different sources and production processes are examined. These biofuels are (1) biobutanol produced by microbial ABE fermentation from renewable material, (2) HVO (hydrotreated vegetable oil) derived from hydrogenation of non-edible oils, (3) biodiesel from waste free fatty acids originated in the oil refining industry, and (4) a novel biofuel that combines fatty acid methyl esters (FAME) and glycerol formal esters (FAGE), which contributes to a decrease in the excess of glycerol from current biodiesel plants. Blending ratios include 5, 10, 15, and 20% (% vol.) of biofuel, covering the range expected for biofuels in future years. Pure fuels and some higher ratios are considered as well to complete and discuss the tendencies. In the case of biodiesel and FAME/FAGE blends in diesel, ratios up to 20% meet all requirements set in current fuel quality standards. Larger blending ratios are possible for HVO blends if HVO is additivated to lubricity improvers. For biobutanol blends, the recommended blending ratio is limited to 10% or lower to avoid high water content and low cetane number.

Suggested Citation

  • José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2034-:d:234811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    2. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.
    3. Somnuk, Krit & Soysuwan, Natthapon & Prateepchaikul, Gumpon, 2019. "Continuous process for biodiesel production from palm fatty acid distillate (PFAD) using helical static mixers as reactors," Renewable Energy, Elsevier, vol. 131(C), pages 100-110.
    4. Lapuerta, Magín & Rodríguez-Fernández, José & García-Contreras, Reyes, 2015. "Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle," Energy, Elsevier, vol. 93(P1), pages 568-579.
    5. Rodríguez-Fernández, José & Lapuerta, Magín & Sánchez-Valdepeñas, Jesús, 2017. "Regeneration of diesel particulate filters: Effect of renewable fuels," Renewable Energy, Elsevier, vol. 104(C), pages 30-39.
    6. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.
    7. Nawar Al-Esawi & Mansour Al Qubeissi & Ruslana Kolodnytska, 2019. "The Impact of Biodiesel Fuel on Ethanol/Diesel Blends," Energies, MDPI, vol. 12(9), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
    2. Marzena Dzida, 2020. "Thermophysical Properties of 1-Butanol at High Pressures," Energies, MDPI, vol. 13(19), pages 1-21, September.
    3. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
    4. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sidhu, Manpreet Singh & Roy, Murari Mohon & Wang, Wilson, 2018. "Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine," Applied Energy, Elsevier, vol. 230(C), pages 148-159.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    5. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    6. Fazal, M.A. & Jakeria, M.R. & Haseeb, A.S.M.A. & Rubaiee, Saeed, 2017. "Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals," Energy, Elsevier, vol. 135(C), pages 220-226.
    7. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    8. Kolakoti, Aditya & Koten, Hasan, 2022. "Effect of supercharging in neat biodiesel fuelled naturally aspirated diesel engine combustion, vibration and emission analysis," Energy, Elsevier, vol. 260(C).
    9. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    10. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    11. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.
    12. Márcio Carvalho & Felipe Torres & Vitor Ferreira & Júlio Silva & Jorge Martins & Ednildo Torres, 2020. "Effects of Diethyl Ether Introduction in Emissions and Performance of a Diesel Engine Fueled with Biodiesel-Ethanol Blends," Energies, MDPI, vol. 13(15), pages 1-14, July.
    13. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    14. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    15. Ji, Changwei & Shi, Lei & Wang, Shuofeng & Cong, Xiaoyu & Su, Teng & Yu, Menghui, 2017. "Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions," Energy, Elsevier, vol. 126(C), pages 335-342.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    18. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    19. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2034-:d:234811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.