IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6582-d1238659.html
   My bibliography  Save this article

Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)

Author

Listed:
  • Ganesha Thippeshnaik

    (Department of Mechanical Engineering, Centre for Post Graduate Studies, Visvesvaraya Technological University, Mysuru 570029, India)

  • Sajjal Basanna Prakash

    (Department of Mechanical Engineering, Centre for Post Graduate Studies, Visvesvaraya Technological University, Mysuru 570029, India)

  • Ajith Bintravalli Suresh

    (Department of Mechanical Engineering, Sahyadri College of Engineering and Management, Visvesvaraya Technological University, Mangalore 575007, India)

  • Manjunath Patel Gowdru Chandrashekarappa

    (Department of Mechanical Engineering, PES Institute of Technology and Management, Visvesvaraya Technological University, Shivamogga 577204, India)

  • Olusegun David Samuel

    (Department of Mechanical Engineering, Federal University of Petroleum Resources, Effurun P.M.B 1221, Nigeria
    Department of Mechanical Engineering, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa)

  • Oguzhan Der

    (Department of Marine Vehicles Management Engineering, Faculty of Maritime, Bandirma Onyedi Eylul University, 10200 Bandırma, Turkey)

  • Ali Ercetin

    (Department of Naval Architecture and Marine Engineering, Maritime Faculty, Bandırma Onyedi Eylul University, 10200 Bandırma, Turkey)

Abstract

Concerns about the depletion of petroleum reserves and rising pollution led researchers to search for alternate and environmentally compatible fuels for compression ignition engines. As an excellent alternative fuel additive to biodiesel–diesel blends, higher alcohol exhibits outstanding fuel properties (such as high energy content and cetane number) and can operate in diesel engines without requiring engine changes. This study focuses on investigating the ternary blends comprising higher alcohols, namely 1-heptanol and n -octanol, in hybrid biodiesel (animal fat oil–rice bran oil–cottonseed oil) and diesel on compression ignition engine characteristics. The performance, combustion, and emissions of a diesel engine fuelled with mono (D100), binary (B20), and ternary fuel blends (B20H10, B20H20, B20O10, and B20O20) were analysed at a constant engine speed of 1500 rpm. The test fuels met the American Society for Testing and Materials standards for fuel properties and exhibited stable behaviour during testing. Experimental results showed that at 100% load, the least brake-specific fuel consumptions for diesel fuel, B20, B20H10, B20H20, B20O10, and B20O20 were 254.1 g/kWh, 302.14 g/kWh, 281.25 g/kWh, 310.94 g/kWh, 292.8 g/kWh, and 313.80 g/kWh, respectively. Meanwhile, the maximum brake thermal efficiency values were obtained as 38.65%, 37.01%, 37.76%, 36.84%, 37.12%, and 36.38%, respectively. At 100% load, the peak heat release rates for diesel, B20, B20H10, B20H20, B20O10, and B20O20 were found to be 64.65 J/deg, 59.07 J/deg, 62.34 J/deg, 56.12 J/deg, 57.95 J/deg, and 51.9 J/deg, respectively. The addition of 1-heptanol and n -octanol as oxygenated additives into the ternary blend resulted in decreased carbon monoxide and unburned hydrocarbon emissions while increasing carbon dioxide and nitrous oxide emissions compared to diesel fuel. Overall, the study concludes that ternary blends with 1-heptanol and n -octanol as additives improve performance and combustion behaviour and reduce exhaust emissions compared to binary blends.

Suggested Citation

  • Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6582-:d:1238659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    3. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    4. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    5. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    6. Qi, D.H. & Chen, H. & Geng, L.M. & Bian, Y.ZH. & Ren, X.CH., 2010. "Performance and combustion characteristics of biodiesel-diesel-methanol blend fuelled engine," Applied Energy, Elsevier, vol. 87(5), pages 1679-1686, May.
    7. Yesilyurt, Murat Kadir, 2019. "The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 132(C), pages 649-666.
    8. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    9. Babu, D. & Anand, R., 2017. "Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics," Energy, Elsevier, vol. 133(C), pages 761-776.
    10. Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
    11. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.
    12. Bari, S. & Saad, Idris, 2015. "Optimization of vane numbers through simulation and experiment, and investigation of the effect on the performance and emissions of a CI (compression ignition) engine run with biodiesel," Energy, Elsevier, vol. 79(C), pages 248-263.
    13. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    14. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    15. Yilmaz, Nadir, 2012. "Comparative analysis of biodiesel–ethanol–diesel and biodiesel–methanol–diesel blends in a diesel engine," Energy, Elsevier, vol. 40(1), pages 210-213.
    16. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    17. Balamurugan, T. & Nalini, R., 2014. "Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel," Energy, Elsevier, vol. 78(C), pages 356-363.
    18. Cheikh, Kezrane & Sary, Awad & Khaled, Loubar & Abdelkrim, Liazid & Mohand, Tazerout, 2016. "Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 320-329.
    19. Gian Paolo Beretta, 2007. "World energy consumption and resources: an outlook for the rest of the century," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 7(1/2), pages 99-112.
    20. Gupta, Jharna & Agarwal, Madhu & Dalai, A.K., 2019. "Intensified transesterification of mixture of edible and nonedible oils in reverse flow helical coil reactor for biodiesel production," Renewable Energy, Elsevier, vol. 134(C), pages 509-525.
    21. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    22. Pereira, L.G. & Dias, M.O.S. & Mariano, A.P. & Maciel Filho, R. & Bonomi, A., 2015. "Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes," Applied Energy, Elsevier, vol. 160(C), pages 120-131.
    23. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    24. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Kemal Balki, 2024. "Determination of Optimum Operating Parameters in a Non-Road Diesel Engine Fueled with 1-Heptanol/Biodiesel at Different Injection Pressures and Advances," Energies, MDPI, vol. 17(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    3. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    4. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    5. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    6. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    8. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    9. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    11. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    12. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    13. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    14. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    15. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    16. Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
    17. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    18. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    19. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Liu, Jialin & Reitz, Rolf D. & Yao, Mingfa, 2016. "Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications," Energy, Elsevier, vol. 114(C), pages 542-558.
    20. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6582-:d:1238659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.