IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2564-d1656350.html
   My bibliography  Save this article

The Effect of ZnO and CNT Nanoparticles on the Combustion Characteristics and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel and Biodiesel

Author

Listed:
  • Vida Jokubynienė

    (Agriculture Academy, Vytautas Magnus University, K. Donelaičio Str. 58, 44248 Kaunas, Lithuania
    Higher Education Institution, Technology Faculty, Bijūnų g. 10, 91223 Klaipėda, Lithuania)

  • Stasys Slavinskas

    (Agriculture Academy, Vytautas Magnus University, K. Donelaičio Str. 58, 44248 Kaunas, Lithuania)

Abstract

This article presents the test results of a turbocharged Common Rail Direct Injection (CRDI) diesel engine operating on diesel fuel and methyl ester biodiesel with nanoparticle additives. The use of nanomaterials has been shown to improve the combustion process. In this study, various nanoparticles, including zinc oxide and carbon plates, were investigated as additives to enhance the combustion performance of selected fuels. The fuel of choice was conventional diesel, and a methyl ester of rapeseed oil called biodiesel. A turbocharged Common Rail Direct Injection (CRDI) diesel engine, model FIAT 192A1000, was used for the experiments. The following engine parameters were measured and recorded: torque (Ms, Nm), fuel consumption (Bd, kg/h), carbon monoxide (CO, ppm), and nitrogen oxides (NO x , ppm). The results show that nanoparticles can improve the combustion performance of the fuels studied in the engine. However, the effect of nanoparticles on engine parameters varied. In summary, the influence of nanoparticles is noticeable: the ID is shorter with diesel fuel with carbon nanotubes at 50 ppm and 100 ppm concentration, the NO x is reduced with zinc oxide and D, and CO is diminished in all load modes when using RME with carbon nanotubes.

Suggested Citation

  • Vida Jokubynienė & Stasys Slavinskas, 2025. "The Effect of ZnO and CNT Nanoparticles on the Combustion Characteristics and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel and Biodiesel," Energies, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2564-:d:1656350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.
    2. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    2. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    3. Kolakoti, Aditya & Koten, Hasan, 2022. "Effect of supercharging in neat biodiesel fuelled naturally aspirated diesel engine combustion, vibration and emission analysis," Energy, Elsevier, vol. 260(C).
    4. Ahmed A. Fattah & Tarek M. Aboul-Fotouh & Khaled A. Fattah & Aya H. Mohammed, 2022. "Utilization of Selected Nanoparticles (Ag 2 O and MnO 2 ) for the Production of High-Quality and Environmental-Friendly Gasoline," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    5. Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).
    6. Mallesh B. Sanjeevannavar & Nagaraj R. Banapurmath & V. Dananjaya Kumar & Ashok M. Sajjan & Irfan Anjum Badruddin & Chandramouli Vadlamudi & Sanjay Krishnappa & Sarfaraz Kamangar & Rahmath Ulla Baig &, 2023. "Machine Learning Prediction and Optimization of Performance and Emissions Characteristics of IC Engine," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    7. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    8. Hossain, Abul K. & Sharma, Vikas & Ahmad, Gulzar & Awotwe, Tabbi, 2023. "Energy outputs and emissions of biodiesels as a function of coolant temperature and composition," Renewable Energy, Elsevier, vol. 215(C).
    9. Ali, Hamdy Elsayed Ahmed & El-fayoumy, Eman A. & Soliman, Ramadan M. & Elkhatat, Ahmed & Al-Meer, Saeed & Elsaid, Khaled & Hussein, Hanaa Ali & Zul Helmi Rozaini, Mohd & Azmuddin Abdullah, Mohd, 2024. "Nanoparticle applications in Algal-biorefinery for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    11. Elkelawy, Medhat & Etaiw, Safaa El-din H. & Alm-Eldin Bastawissi, Hagar & Ayad, Mohamed I. & Radwan, Ahmed Mohamed & Dawood, Mohamed M., 2021. "Diesel/ biodiesel /silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine," Energy, Elsevier, vol. 216(C).
    12. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).
    13. Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
    14. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    16. Dhani Avianto Sugeng & Ahmad Muhsin Ithnin & Wira Jazair Yahya & Hasannuddin Abd Kadir, 2020. "Emulsifier-Free Water-in-Biodiesel Emulsion Fuel via Steam Emulsification: Its Physical Properties, Combustion Performance, and Exhaust Emission," Energies, MDPI, vol. 13(20), pages 1-20, October.
    17. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2564-:d:1656350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.