IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036260.html
   My bibliography  Save this article

Combustion and emission characteristics of ammonia–diesel and ammonia–PODE dual fuel engines with multi-time ignition mixed-mode combustion (MIMC) mode

Author

Listed:
  • Mao, Jianshu
  • Liu, Yi
  • Ma, Xiao
  • Chen, Qingchu
  • Wang, Zhi
  • Shuai, Shijin

Abstract

Ammonia dual fuel mode holds promise for enhancing ammonia combustion. In this study, differences in combustion and emission characteristics between ammonia–diesel and ammonia–PODE modes were investigated using multi-time ignition mixed-mode combustion (MIMC) mode. Firstly, the effects of single injection and MIMC modes were compared. Moreover, the effects of outer-inner, inner-outer and outer-inner-outer strategies within MIMC mode were explored. The results demonstrated that MIMC mode has substantial potential to achieve higher indicated thermal efficiency (ITE), lower N2O, NH3 and particle emissions, shorter combustion duration, but increased NOx, CO and THC emissions. In outer-inner strategy, increasing first injection energy ratio (ER1) resulted in different combustion behaviors in AD and AP modes. ITE initially increased and subsequently decreased with increasing ER1. For inner-outer strategy, NOx and NH3 emissions decreased with increasing second injection energy ratio (ER2), while N2O emissions initially increased and then decreased. In outer-inner-outer strategy, NOx and NH3 emissions were lower than those in outer-inner strategy. ITE and maximum apparent pressure rise rate in outer-inner-outer strategy were slightly lower compared to outer-inner strategy, indicating that multi-time multi-zone induced ignition strategy in MIMC mode shows significant potential for enhancing ammonia combustion performance and reducing pollutant emissions.

Suggested Citation

  • Mao, Jianshu & Liu, Yi & Ma, Xiao & Chen, Qingchu & Wang, Zhi & Shuai, Shijin, 2024. "Combustion and emission characteristics of ammonia–diesel and ammonia–PODE dual fuel engines with multi-time ignition mixed-mode combustion (MIMC) mode," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036260
    DOI: 10.1016/j.energy.2024.133848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Binyang & Wang, Yusong & Wang, Decheng & Feng, Yongming & Jin, Shouying, 2023. "Generation mechanism and emission characteristics of N2O and NOx in ammonia-diesel dual-fuel engine," Energy, Elsevier, vol. 284(C).
    2. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    3. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    4. Xingyu Sun & Mengjia Li & Jincheng Li & Xiongbo Duan & Can Wang & Weifan Luo & Haifeng Liu & Jingping Liu, 2023. "Nitrogen Oxides and Ammonia Removal Analysis Based on Three-Dimensional Ammonia-Diesel Dual Fuel Engine Coupled with One-Dimensional SCR Model," Energies, MDPI, vol. 16(2), pages 1-18, January.
    5. Liu, Haoye & Wang, Zhi & Zhang, Jun & Wang, Jianxin & Shuai, Shijin, 2017. "Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines," Applied Energy, Elsevier, vol. 185(P2), pages 1393-1402.
    6. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    7. Zhou, Dezhi & Yang, Wenming & Zhao, Feiyang & Li, Jing, 2017. "Dual-fuel RCCI engine combustion modeling with detailed chemistry considering flame propagation in partially premixed combustion," Applied Energy, Elsevier, vol. 203(C), pages 164-176.
    8. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    9. Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin & Zheng, Yanyan & Tang, Qiang & Wang, Jinfu, 2015. "Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends," Energy, Elsevier, vol. 88(C), pages 793-800.
    10. Kaiyuan Cai & Yi Liu & Qingchu Chen & Yunliang Qi & Li Li & Zhi Wang, 2023. "Combustion Behaviors and Unregular Emission Characteristics in an Ammonia–Diesel Engine," Energies, MDPI, vol. 16(19), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    2. Zhu, Qiren & Zong, Yichen & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2021. "Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine," Applied Energy, Elsevier, vol. 300(C).
    3. Li, Yuhui & Huang, Yinmin & Chen, Hanyu & Wei, Feng & Zhang, Zunhua & Zhou, Mengni, 2024. "Combustion and emission of diesel/PODE/gasoline blended fuel in a diesel engine that meet the China VI emission standards," Energy, Elsevier, vol. 301(C).
    4. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    5. Haoming Gu & Shenghua Liu & Yanju Wei & Xibin Liu & Xiaodong Zhu & Zheyang Li, 2022. "Effects of Polyoxymethylene Dimethyl Ethers Addition in Diesel on Real Driving Emission and Fuel Consumption Characteristics of a CHINA VI Heavy-Duty Vehicle," Energies, MDPI, vol. 15(7), pages 1-20, March.
    6. Liu, Haoye & Wang, Zhi & Li, Yanfei & Zheng, Yanyan & He, Tanjin & Wang, Jianxin, 2019. "Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers," Applied Energy, Elsevier, vol. 233, pages 599-611.
    7. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    8. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).
    9. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    10. Ji, Changwei & Shi, Lei & Wang, Shuofeng & Cong, Xiaoyu & Su, Teng & Yu, Menghui, 2017. "Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions," Energy, Elsevier, vol. 126(C), pages 335-342.
    11. Ye, Lan & Zhou, Rongyin & Chen, Weihao & Gong, Shiqi & Zhou, Xinyi & Li, Jing, 2024. "Effect of in-cylinder flow on the combustion and flame propagation characteristics of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 309(C).
    12. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    13. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    14. Zhu, Qiren & Zong, Yichen & Tan, Yong Ren & Lyu, Jie-Yao & Pan, Jianfeng & Zhou, Xinyi & Liu, Haili & He, Song & Chen, Wang & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2024. "Comparative analysis of PODE3 and PODE4 fuel additives for emission reduction and soot characteristics in compression ignition engines," Energy, Elsevier, vol. 286(C).
    15. Liu, Junheng & Yang, Jun & Sun, Ping & Gao, Wanying & Yang, Chen & Fang, Jia, 2019. "Compound combustion and pollutant emissions characteristics of a common-rail engine with ethanol homogeneous charge and polyoxymethylene dimethyl ethers injection," Applied Energy, Elsevier, vol. 239(C), pages 1154-1162.
    16. Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
    17. Sun, Wanchen & Wang, Xiaonan & Guo, Liang & Zhang, Hao & Zeng, Wenpeng & Lin, Shaodian & Zhu, Genan & Jiang, Mengqi & Ma, Xiaoyu, 2025. "Study on effects of EGR and injection strategies on the combustion and emission characteristics of ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 315(C).
    18. Kwonwoo Jang & Jeonghyeon Yang & Beomsoo Kim & Jaesung Kwon, 2024. "Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions," Energies, MDPI, vol. 17(24), pages 1-17, December.
    19. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    20. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.