IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016457.html
   My bibliography  Save this article

Generation characteristics of nitrogen-containing pollutants in ammonia-diesel dual-fuel engines under different operating conditions

Author

Listed:
  • Nie, Xuexuan
  • Bi, Yuhua
  • Lei, Jilin
  • Shen, Lizhong
  • Chen, Guisheng
  • Liu, Shaohua
  • Fu, Quan

Abstract

The emission generation process in ammonia-diesel dual-fuel engines involves a series of complex physical and chemical processes influenced by numerous factors. However, the operating conditions significantly impacted the combustion state of the engine. Under different operating conditions, variations in intake and injection states resulted in noticeable differences in the combustion process and emission characteristics. To investigate the mechanisms of nitrogen-containing pollutant generation and the emission characteristics of the combustion process in ammonia-diesel dual-fuel engines under varying operating conditions, numerical simulation methods were employed to study the in-cylinder combustion temperature and the distribution of nitrogen-containing pollutants. The results indicated that the primary nitrogen-containing pollutants in ammonia-diesel dual-fuel engines included NH3, NO, NO2, and N2O. The formation of these pollutants was strongly influenced by the interactions among combustion temperature, equivalence ratio, pressure, flame conditions, residence time, and the concentrations of key reactants. As the ammonia energy ratio increased, the distribution area of the high-temperature zone in the cylinder decreased. The NH3 distribution pattern was found to be correlated with the temperature distribution, with lower NH3 concentrations in high-temperature regions and higher NO concentrations. N2O was observed to form around the NO distribution area. With the increase in ammonia energy ratio, the equivalence ratio increased while the average in-cylinder temperature decreased. Unburned NH3 was formed under low equivalence ratios and low temperatures. High NO emission regions were easily formed at equivalence ratios between 0.5 and 1 and temperatures above 1500 K, while high N2O emission regions were formed at equivalence ratios of ≤1 and temperatures between 1300 and 2100 K. Under different engine speeds, loads, and atmospheric pressures, variations in initial ammonia mass fraction and intake flow rates led to significant changes in equivalence ratios and temperatures, resulting in marked differences in pollutant distribution generated during combustion. Comparing different operating parameters, it was found that engine load had the most significant impact on ammonia combustion. As the load increased, the high-temperature region in the cylinder expanded. At an engine torque of 400 N m, the final emissions of NH3, NO, NO2, and N2O were measured at 1487, 541, 37, and 66 ppm, respectively.

Suggested Citation

  • Nie, Xuexuan & Bi, Yuhua & Lei, Jilin & Shen, Lizhong & Chen, Guisheng & Liu, Shaohua & Fu, Quan, 2025. "Generation characteristics of nitrogen-containing pollutants in ammonia-diesel dual-fuel engines under different operating conditions," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016457
    DOI: 10.1016/j.energy.2025.136003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Binyang & Wang, Yusong & Wang, Decheng & Feng, Yongming & Jin, Shouying, 2023. "Generation mechanism and emission characteristics of N2O and NOx in ammonia-diesel dual-fuel engine," Energy, Elsevier, vol. 284(C).
    2. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Sun, Wanchen & Wang, Xiaonan & Guo, Liang & Zhang, Hao & Zeng, Wenpeng & Lin, Shaodian & Zhu, Genan & Jiang, Mengqi & Ma, Xiaoyu, 2025. "Study on effects of EGR and injection strategies on the combustion and emission characteristics of ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 315(C).
    4. Wang, Zhongxuan & Yang, Can & Zhang, Fan & Cheng, Xiaobei, 2024. "Effects of diesel injector nozzle angle and split diesel injection strategy on combustion and emission characteristics of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 307(C).
    5. Nie, Xuexuan & Bi, Yuhua & Shen, Lizhong & Lei, Jilin & Wan, Mingding & Xiao, Yuhan & Chen, Guisheng, 2024. "Experimental study for optimizing EGR strategy in an ammonia-diesel dual-fuel engine under different altitudes," Energy, Elsevier, vol. 313(C).
    6. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    7. Mao, Jianshu & Liu, Yi & Ma, Xiao & Chen, Qingchu & Wang, Zhi & Shuai, Shijin, 2024. "Combustion and emission characteristics of ammonia–diesel and ammonia–PODE dual fuel engines with multi-time ignition mixed-mode combustion (MIMC) mode," Energy, Elsevier, vol. 313(C).
    8. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    10. Shi, Cheng & Zhang, Zheng & Wang, Huaiyu & Wang, Jingyi & Cheng, Tengfei & Zhang, Liang, 2024. "Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines," Energy, Elsevier, vol. 296(C).
    11. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    12. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Lang, Maochun & Su, Yan & Li, Xiaoping & Xie, Fangxi & Wang, Yaodong & Shen, Bo & Zhang, Yulin, 2024. "Numerical study on the effect of injection strategy on combustion and NO emission from different sources in a diesel/ammonia RCCI engine," Energy, Elsevier, vol. 310(C).
    14. Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fan & Yang, Can & Wang, Zhongxuan & Cheng, Xiaobei, 2025. "Comparison of diesel single/double/triple injection strategies and early/late compression ignition regimes in an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 322(C).
    2. Zhang, Xiaolei & Tian, Jiangping & Cui, Zechuan & Yin, Shuo & Ye, Mingyuan & Yang, Hongen & Zhou, Qingxing & Shi, Song & Wei, Kaile, 2024. "Visualization study on the flame propagation and distribution characteristics and exploration of optimal injection strategy in ammonia/diesel dual direct injection mode," Energy, Elsevier, vol. 307(C).
    3. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    4. Lin, Zhelong & Liu, Yi & Chen, Qingchu & Sun, Qiyang & Zhu, Wuzhe & Qi, Yunliang & Wang, Zhi, 2025. "Experimental study on the combustion pattern in an ammonia engine using micro diesel ignition," Energy, Elsevier, vol. 320(C).
    5. Nie, Xuexuan & Bi, Yuhua & Shen, Lizhong & Lei, Jilin & Wan, Mingding & Xiao, Yuhan & Chen, Guisheng, 2024. "Experimental study for optimizing EGR strategy in an ammonia-diesel dual-fuel engine under different altitudes," Energy, Elsevier, vol. 313(C).
    6. Zhang, Xiaolei & Tian, Jiangping & Yang, Hongen & Shi, Song & Zhou, Qingxing & Yin, Shuo & Ye, Mingyuan & Shu, Deyuan & Cui, Zechuan, 2025. "Exploring the effects of ambient and diesel injection parameters on ignition and combustion characteristics of premixed ammonia ignited by diesel through a rapid compression and expansion machine," Energy, Elsevier, vol. 318(C).
    7. Shi, Cheng & Duan, Ruiling & Cheng, Tengfei & Nie, Fuquan & Yan, Xiaodong & Zhu, Jian, 2025. "Understanding the role of ammonia combined injection in improving combustion and emissions characteristics for heavy-duty CI engine," Energy, Elsevier, vol. 324(C).
    8. Cui, Jingchen & Chen, Weize & Wang, Bing & Fan, Yuanzhi & Tian, Hua & Long, Wuqiang & Liu, Xing, 2024. "Effects of relative position of injectors on the performance of ammonia/diesel two-stroke engines," Energy, Elsevier, vol. 309(C).
    9. Sun, Wanchen & Wang, Xiaonan & Guo, Liang & Zhang, Hao & Zeng, Wenpeng & Lin, Shaodian & Zhu, Genan & Jiang, Mengqi & Ma, Xiaoyu, 2025. "Study on effects of EGR and injection strategies on the combustion and emission characteristics of ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 315(C).
    10. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    11. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    12. Wojciech Tutak & Arkadiusz Jamrozik, 2025. "Analysis of the Application of Ammonia as a Fuel for a Compression-Ignition Engine," Energies, MDPI, vol. 18(12), pages 1-25, June.
    13. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    14. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    15. Meng, Xiangyu & Zhu, Wenchao & Yin, Shuo & Tian, Jiangping & Cao, Jianlin & Long, Wuqiang & Bi, Mingshu, 2025. "Study for improving ammonia combustion and emissions using different hydrogen addition strategies in pre-chamber turbulent jet ignition mode," Energy, Elsevier, vol. 323(C).
    16. Liu, Xiangtao & Si, Jicang & Wang, Guochang & Wu, Mengwei & Mi, Jianchun, 2025. "Nitrogen sources and formation routes of nitric oxide from pure ammonia combustion," Energy, Elsevier, vol. 315(C).
    17. Li, Yuqiang & Cao, Hongyi & Lei, Ruoyun & Deng, Chengwei, 2025. "Experimental study on the effects of simulated EGR on ammonia-diesel dual-fuel combustion in a constant volume chamber," Energy, Elsevier, vol. 320(C).
    18. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    19. Guo, Xinpeng & Li, Tie & Huang, Shuai & Zhou, Xinyi & Chen, Run & Wei, Wenze & Wu, Zehao & Wang, Ning & Li, Shiyan, 2025. "Characteristics of ignition, combustion and emission formation of premixed ammonia-hydrogen blends by hydrogen-fueled pre-chamber turbulent jets," Energy, Elsevier, vol. 322(C).
    20. Meng, Hao & Zhan, Qiang & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng, 2025. "Comprehensive multi-performance research of hydrogen-fueled Wankel rotary engine by experimental and data-driven methods," Energy, Elsevier, vol. 319(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.