IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225019875.html
   My bibliography  Save this article

Applicability of furan-gasoline blends with energy, exergy, sustainability, and entropy generation analysis for SI engines

Author

Listed:
  • Paparao, Jami
  • Singh, Paramvir
  • Patil, Vishal
  • Khandelwal, Bhupendra
  • Kumar, Sudarshan

Abstract

Biomass-derived furan additives are emerging as promising components for gasoline blends, offering a renewable, sustainable alternative to conventional fuels. Furan derivatives, oxygenated hydrocarbons from lignocellulosic biomass, are promising compounds to be used as an additive to gasoline. This study explores the feasibility of using furanic compounds, including 2-methylfuran, tetrahydrofuran, and methyl-tetrahydrofuran, as oxygenated fuel additives in gasoline blends (5 %, 10 %, and 15 % by volume). The blends were tested in multi-point fuel injection spark ignition engines, with a focus on energy-exergy analysis, sustainability, and entropy generation rate. The fuel blends with 5 % methyl-tetrahydrofuran and 5 % tetrahydrofuran with 95 % gasoline delivered brake thermal efficiencies of 32.61 % and 32.62 %, respectively, at 3500 rpm, along with sustainability index values of 1.349 and 1.347 closely matching gasoline. Entropy generation rates were also evaluated, with lower rates at 3500 rpm compared to 4500 rpm. At 3500 rpm, the entropy generation rates for 2MF10, THF10, MTHF10, and other blends ranged from 0.113 to 0.129 kW/K, increasing at higher engine speeds because of higher fuel consumption, friction, and heat losses. The study highlights the potential of furan-gasoline blends as sustainable alternatives to conventional fuels without significant engine modifications.

Suggested Citation

  • Paparao, Jami & Singh, Paramvir & Patil, Vishal & Khandelwal, Bhupendra & Kumar, Sudarshan, 2025. "Applicability of furan-gasoline blends with energy, exergy, sustainability, and entropy generation analysis for SI engines," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225019875
    DOI: 10.1016/j.energy.2025.136345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225019875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
    2. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    3. Divekar, Prasad & Han, Xiaoye & Zhang, Xiaoxi & Zheng, Ming & Tjong, Jimi, 2023. "Energy efficiency improvements and CO2 emission reduction by CNG use in medium- and heavy-duty spark-ignition engines," Energy, Elsevier, vol. 263(PB).
    4. Sejkora, Christoph & Kühberger, Lisa & Radner, Fabian & Trattner, Alexander & Kienberger, Thomas, 2022. "Exergy as criteria for efficient energy systems – Maximising energy efficiency from resource to energy service, an Austrian case study," Energy, Elsevier, vol. 239(PC).
    5. Yadav, Prem Shanker & Gautam, Raghvendra & Le, Thanh Tuan & Khandelwal, Neelam & Le, Anh Tuan & Hoang, Anh Tuan, 2024. "A comprehensive analysis of energy, exergy, performance, and emissions of a spark-ignition engine running on blends of gasoline, ethanol, and isoamyl alcohol," Energy, Elsevier, vol. 307(C).
    6. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    7. Li, Jing & Ye, Lan & Gong, Shiqi & Deng, Xiaorong & Wang, Shuo & Liu, Rui & Yang, Wenming, 2024. "Review on the combustion progress and engine application of tailor-made fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Jeongwoo Song & Han Ho Song, 2020. "Analytical Approach to the Exergy Destruction and the Simple Expansion Work Potential in the Constant Internal Energy and Volume Combustion Process," Energies, MDPI, vol. 13(2), pages 1-24, January.
    9. Halis, Serdar & Doğan, Battal, 2023. "Effects of intake air temperature on energy, exergy and sustainability analyses in an RCCI engine fueled with iso-propanol and n-heptane," Energy, Elsevier, vol. 284(C).
    10. Obed Majeed Ali & Hasan Koten & Naseer T. Alwan & Abdul Qadeer Khan, 2022. "Optimization of SI Engine Performance Operating with Low Octane Gasoline and Fuel Additives from Waste," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, August.
    11. Zhang, Peng & Chen, Guoqiang & Chen, Hao & Wu, Han & Geng, Limin & Qi, Long & Qi, Donghui & Chen, Zhanming & Cao, Jianming & Ma, Yanlei, 2025. "Role of fuel and free diffusion of furan/diesel and methyl heptanoate/diesel blends spray on combustion characteristics," Renewable Energy, Elsevier, vol. 240(C).
    12. Yaqoob, Haseeb & Teoh, Yew Heng & Sher, Farooq & Jamil, Muhammad Ahmad & Ali, Mubbashar & Ağbulut, Ümit & Salam, Hamza Ahmad & Arslan, Muhammad & Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Elfasakh, 2022. "Energy, exergy, sustainability and economic analysis of waste tire pyrolysis oil blends with different nanoparticle additives in spark ignition engine," Energy, Elsevier, vol. 251(C).
    13. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    14. Ozsezen, Ahmet Necati & Canakci, Mustafa, 2011. "Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle," Energy, Elsevier, vol. 36(5), pages 2747-2752.
    15. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    16. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    17. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    2. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    3. Balla M. Ahmed & Maji Luo & Hassan A. M. Elbadawi & Nasreldin M. Mahmoud & Pang-Chieh Sui, 2024. "Experimental Study of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions of Diesel Engine Fueled with Diesel–2-Methylfuran Blends," Energies, MDPI, vol. 18(1), pages 1-16, December.
    4. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    5. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    6. Michael Acheampong & Qiuyan Yu & Funda Cansu Ertem & Lucy Deba Enomah Ebude & Shakhawat Tanim & Michael Eduful & Mehrdad Vaziri & Erick Ananga, 2019. "Is Ghana Ready to Attain Sustainable Development Goal (SDG) Number 7?—A Comprehensive Assessment of Its Renewable Energy Potential and Pitfalls," Energies, MDPI, vol. 12(3), pages 1-40, January.
    7. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    9. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    10. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    11. Lei Meng & Chunnian Zeng & Yuqiang Li & Karthik Nithyanandan & Timothy H. Lee & Chia-fon Lee, 2016. "An Experimental Study on the Potential Usage of Acetone as an Oxygenate Additive in PFI SI Engines," Energies, MDPI, vol. 9(4), pages 1-20, March.
    12. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    13. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    15. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    16. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt & Binfield, Julian, 2017. "Complement or substitute: Ethanol’s uncertain relationship with gasoline under alternative petroleum price and policy scenarios," Applied Energy, Elsevier, vol. 191(C), pages 385-397.
    17. Gülcan, Halil Erdi & Erol, Derviş & Çelik, Mehmet & Bayındırlı, Cihan, 2024. "Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives," Energy, Elsevier, vol. 313(C).
    18. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    19. Li, Jing & Ye, Lan & Gong, Shiqi & Deng, Xiaorong & Wang, Shuo & Liu, Rui & Yang, Wenming, 2024. "Review on the combustion progress and engine application of tailor-made fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225019875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.