IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2408-2420.html
   My bibliography  Save this article

Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation

Author

Listed:
  • Hoseinpour, Marziyeh
  • Sadrnia, Hassan
  • Tabasizadeh, Mohammad
  • Ghobadian, Barat

Abstract

In this study, the effect of gasoline fumigation on the energy and exergy balance of a DI diesel engine fueled with waste cooking oil biodiesel and diesel blend (B20) is experimentally investigated and theoretically studied. To have a comprehensive analysis, diesel and B20 were considered as two baseline fuels and gasoline fumigation was induced at two different ratios. The obtained results reveal that gasoline fumigation increases the energy and exergy efficiency at medium and high loads to about 5% for diesel baseline fuel, while the energy and exergy efficiency decreases slightly in case of B20 fuel with gasoline fumigation. For all operating points, the percentage of energy and exergy transfer through the exhaust gases decreases by an average of 2.6% and 6.4%, respectively in case of using gasoline fumigation for both diesel and B20 fuels. Moreover, the destructed exergy of the engine operating on B20 and the fumigated gasoline was higher than that of diesel and B20 by about 2.4% on the average. It could be concluded that the combination of B20 and gasoline fumigation might be used as a substitute for diesel fuel in diesel engines under high loads, with higher exergy efficiency and lower exhaust exergy losses.

Suggested Citation

  • Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2408-2420
    DOI: 10.1016/j.energy.2017.11.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    2. Ghadikolaei, Meisam Ahmadi, 2016. "Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1440-1495.
    3. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2014. "Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine," Applied Energy, Elsevier, vol. 135(C), pages 286-298.
    4. Enweremadu, C.C. & Rutto, H.L., 2010. "Combustion, emission and engine performance characteristics of used cooking oil biodiesel--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2863-2873, December.
    5. Aghbashlo, Mortaza & Tabatabaei, Meisam & Mohammadi, Pouya & Mirzajanzadeh, Mehrdad & Ardjmand, Mehdi & Rashidi, Alimorad, 2016. "Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine," Renewable Energy, Elsevier, vol. 93(C), pages 353-368.
    6. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    7. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    8. Gharehghani, Ayatallah & Hosseini, Reza & Mirsalim, Mostafa & Jazayeri, S. Ali & Yusaf, Talal, 2015. "An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas," Energy, Elsevier, vol. 89(C), pages 558-567.
    9. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    10. Rakopoulos, C.D. & Giakoumis, E.G., 2004. "Availability analysis of a turbocharged diesel engine operating under transient load conditions," Energy, Elsevier, vol. 29(8), pages 1085-1104.
    11. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    4. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    5. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2023. "Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends," Energy, Elsevier, vol. 262(PA).
    6. Sreekanth Manavalla & Abhishek Chaudhary & Shreyash Hemant Panchal & Saleel Ismail & Feroskhan M & T. M. Yunus Khan & Syed Javed & Mohammed Azam Ali, 2022. "Exergy Analysis of a CI Engine Operating on Ternary Biodiesel Blends," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    7. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).
    8. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Deka, Hiranya, 2023. "Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings," Renewable Energy, Elsevier, vol. 206(C), pages 514-530.
    9. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
    10. Şöhret, Yasin & Gürbüz, Habib & Akçay, İsmail Hakkı, 2019. "Energy and exergy analyses of a hydrogen fueled SI engine: Effect of ignition timing and compression ratio," Energy, Elsevier, vol. 175(C), pages 410-422.
    11. İlhak, Mehmet İlhan & Tangöz, Selim & Akansu, Selahaddin Orhan & Kahraman, Nafiz, 2019. "An experimental investigation of the use of gasoline-acetylene mixtures at different excess air ratios in an SI engine," Energy, Elsevier, vol. 175(C), pages 434-444.
    12. İlhak, Mehmet İlhan & Akansu, Selahaddin Orhan & Kahraman, Nafiz & Ünalan, Sebahattin, 2018. "Experimental study on an SI engine fuelled by gasoline/acetylene mixtures," Energy, Elsevier, vol. 151(C), pages 707-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    4. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    6. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    7. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    8. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    9. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    10. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    11. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    12. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    13. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    14. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    15. Doğan, Battal & Çelik, Mehmet & Bayındırlı, Cihan & Erol, Derviş, 2023. "Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles," Energy, Elsevier, vol. 274(C).
    16. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Işik, Mehmet Zerrakki & Aydin, Hüseyin, 2019. "Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends," Renewable Energy, Elsevier, vol. 133(C), pages 177-189.
    18. Aamir Shehzad & Arslan Ahmed & Moinuddin Mohammed Quazi & Muhammad Jamshaid & S. M. Ashrafur Rahman & Masjuki Haji Hassan & Hafiz Muhammad Asif Javed, 2021. "Current Research and Development Status of Corrosion Behavior of Automotive Materials in Biofuels," Energies, MDPI, vol. 14(5), pages 1-36, March.
    19. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    20. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2408-2420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.