IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12350-d927930.html
   My bibliography  Save this article

Exergy Analysis of a CI Engine Operating on Ternary Biodiesel Blends

Author

Listed:
  • Sreekanth Manavalla

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Chennai 600127, Tamilnadu, India)

  • Abhishek Chaudhary

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Chennai 600127, Tamilnadu, India)

  • Shreyash Hemant Panchal

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Chennai 600127, Tamilnadu, India)

  • Saleel Ismail

    (Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India)

  • Feroskhan M

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Chennai 600127, Tamilnadu, India)

  • T. M. Yunus Khan

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Syed Javed

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Mohammed Azam Ali

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

Abstract

Exergy analysis is carried out on a single-cylinder CI engine fueled with biodiesel blends of palm, jatropha and cottonseed oils. This is to identify the blends with high exergy destruction. To this end, experimental and analytical methods were adopted. Three types of biodiesel blends incorporated in this study are primary, binary and ternary. The load was varied as an independent parameter, and mass flow rates of air and fuel, flue gas composition, etc., were measured during the study. Moreover, the chemical composition of the fuel blends and flue gas, as well as their flow rates, were used to determine the total exergy. The output parameters determined were 1st and 2nd law efficiency and fuel exergy destruction under all loading conditions. The inference obtained from the experiment suggests minutely higher 1st law efficiency for the biodiesel blends. Increasing the blending ratio led to an increase in efficiency indices.

Suggested Citation

  • Sreekanth Manavalla & Abhishek Chaudhary & Shreyash Hemant Panchal & Saleel Ismail & Feroskhan M & T. M. Yunus Khan & Syed Javed & Mohammed Azam Ali, 2022. "Exergy Analysis of a CI Engine Operating on Ternary Biodiesel Blends," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12350-:d:927930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    2. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    3. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    4. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    5. Taghavifar, Hadi & Nemati, Arash & Walther, Jens Honore, 2019. "Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine," Energy, Elsevier, vol. 187(C).
    6. Paul, Abhishek & Panua, Rajsekhar & Debroy, Durbadal, 2017. "An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Diesel-ethanol-biodiesel blends," Energy, Elsevier, vol. 141(C), pages 839-852.
    7. Ma, Baodong & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Gao, Jian & Chen, Chao, 2020. "Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    2. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Deka, Hiranya, 2023. "Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings," Renewable Energy, Elsevier, vol. 206(C), pages 514-530.
    3. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    4. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    5. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    6. Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.
    7. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    8. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    9. Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
    10. Laura Aguado-Deblas & Rafael Estevez & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna, 2020. "Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends," Energies, MDPI, vol. 13(18), pages 1-14, September.
    11. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2020. "Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-15, December.
    12. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    13. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    14. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    15. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    16. Zhang, Wei & Chang, Shaoyue & Wu, Wei & Dong, Lihui & Chen, Zhaohui & Chen, Guisheng, 2019. "A diesel/natural gas dual fuel mechanism constructed to reveal combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 59-75.
    17. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    18. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    19. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    20. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12350-:d:927930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.