IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v128y2017icp312-328.html
   My bibliography  Save this article

Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends

Author

Listed:
  • Krishnamoorthi, M.
  • Malayalamurthi, R.

Abstract

The intention of the prevailing effort is in the direction of experimentally look for the combined outcome of compression ratio and a number of nozzle holes on performance and emissions of a compression ignition engine by means of an emulsion fuel obtained from aegle marmelos (Bael) oil. This exertion consists of the exergy examination of compression ignition engine towards maximizing the work availability and decreasing the destroyed availability. Ternary blends of diesel - aegle marmelos – diethyl ether (DEE) within the proportion as percentages 100:0:0 (D), 70:20:10 (B1), 60:30:10 (B2), 50:40:10 (B3) became tested in a variable compression ratio (VCR) engine. When operating the diesel engine with B2, Brake thermal efficiency (BTE) of the engine is better by 4.3%, nitric oxides (NOx) emission has been reduced 3.9% at 100% load in compression ratio (CR) 17.5 with number of nozzle hole (NH) 5. The exergy efficiency of B2 fuel has been found 63.88% of fuel input at CR17.5 with 100% engine load. Increasing the number of nozzle holes improves the performance of the diesel engine fueled with bael blends in terms of reduced brake specific energy consumption (BSEC), increased BTE and reduced emissions like hydrocarbon (HC), carbon monoxide (CO) and smoke.

Suggested Citation

  • Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
  • Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:312-328
    DOI: 10.1016/j.energy.2017.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    2. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    3. Wamankar, Arun Kumar & Satapathy, Ashok Kumar & Murugan, S., 2015. "Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion," Energy, Elsevier, vol. 93(P1), pages 511-520.
    4. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kyritsis, Dimitrios C., 2016. "Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trad," Energy, Elsevier, vol. 115(P1), pages 314-325.
    5. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    6. Patel, Paresh D. & Lakdawala, Absar & Chourasia, Sajan & Patel, Rajesh N., 2016. "Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 24-43.
    7. Qi, D.H. & Bae, C. & Feng, Y.M. & Jia, C.C. & Bian, Y.Z., 2013. "Preparation, characterization, engine combustion and emission characteristics of rapeseed oil based hybrid fuels," Renewable Energy, Elsevier, vol. 60(C), pages 98-106.
    8. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    9. Wamankar, Arun Kumar & Murugan, S., 2015. "Combustion, performance and emission characteristics of a diesel engine with internal jet piston using carbon black- water- diesel emulsion," Energy, Elsevier, vol. 91(C), pages 1030-1037.
    10. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    11. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    12. Jafarmadar, Samad & Nemati, Peyman, 2016. "Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model," Renewable Energy, Elsevier, vol. 99(C), pages 514-523.
    13. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    14. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    15. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    16. Soloiu, Valentin & Duggan, Marvin & Harp, Spencer & Vlcek, Brian & Williams, David, 2013. "PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine," Energy, Elsevier, vol. 52(C), pages 143-154.
    17. Reddy, M. Sarveshwar & Sharma, Nikhil & Agarwal, Avinash Kumar, 2016. "Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine," Renewable Energy, Elsevier, vol. 99(C), pages 1008-1018.
    18. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    19. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    20. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    21. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    22. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
    23. Abedin, M.J. & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Rahman, S.M. Ashrafur & Masum, B.M., 2013. "Energy balance of internal combustion engines using alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 20-33.
    24. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    25. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    26. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Thokchom Subhaschandra & Verma, Tikendra Nath, 2019. "Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics," Energy, Elsevier, vol. 189(C).
    2. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    3. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    4. Laura Aguado-Deblas & Rafael Estevez & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna, 2020. "Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends," Energies, MDPI, vol. 13(18), pages 1-14, September.
    5. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    6. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    7. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    8. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    9. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2020. "Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-15, December.
    10. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    11. Sreekanth Manavalla & Abhishek Chaudhary & Shreyash Hemant Panchal & Saleel Ismail & Feroskhan M & T. M. Yunus Khan & Syed Javed & Mohammed Azam Ali, 2022. "Exergy Analysis of a CI Engine Operating on Ternary Biodiesel Blends," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    12. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    13. Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
    14. Tatiana KOLESNIKOVA & Olha SAKNO & Natalia VELMAGINA & Olaksandr LYSYI, 2018. "Thermodynamic Analysis Of The Conrod-Free Engine," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(3), pages 29-39, September.
    15. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    16. Ä°smet Sezer, 2020. "A review study on using diethyl ether in diesel engines: Effects on fuel properties, injection, and combustion characteristics," Energy & Environment, , vol. 31(2), pages 179-214, March.
    17. Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    2. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    3. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    4. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    5. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    6. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    7. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    8. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    10. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    11. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2019. "An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 256(C).
    12. Qi, D.H. & Yang, K. & Zhang, D. & Chen, B. & Wei, Q. & Zhang, C.H., 2017. "Experimental investigation of a turbocharged CRDI diesel engine fueled with Tung oil-diesel-ethanol microemulsion fuel," Renewable Energy, Elsevier, vol. 113(C), pages 1201-1207.
    13. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    14. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    15. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    16. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    17. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    18. Halis, Serdar & Doğan, Battal, 2023. "Effects of intake air temperature on energy, exergy and sustainability analyses in an RCCI engine fueled with iso-propanol and n-heptane," Energy, Elsevier, vol. 284(C).
    19. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    20. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:128:y:2017:i:c:p:312-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.