IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p511-520.html
   My bibliography  Save this article

Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion

Author

Listed:
  • Wamankar, Arun Kumar
  • Satapathy, Ashok Kumar
  • Murugan, S.

Abstract

The aim of the present work is to experimentally investigate the combined effects of compression ratio, nozzle opening pressure and injection timing on the performance and emissions of a CI (compression ignition) engine operated with an emulsion fuel obtained from CB (carbon black). The emulsion contained CB 10%, 2% water, 85% diesel and 3% surfactant was denoted as CBWD10. Tests were carried out with the CBWD10 emulsion in a single-cylinder, four -stroke, air cooled, DI (direct injection) diesel engine developing power of 4.4 kW at a constant speed of 1500 rpm. The experimental results were obtained for the performance and emission parameters of the emulsion fuelled engine when the engine was subjected to different injection timings, nozzle opening pressures and compression ratios. With respect to the original compression ratio of the engine which was 17.5, one lower (16.5) and one higher compression ratio (18.5) were used in the investigation. Similarly, injection timing was advanced to a maximum of 3 °CA, and the nozzle opening pressure was set at 200, 220 and 240 bar at a regular interval of 20 bar. The results were analysed and compared with those of the normal diesel engine operation and presented in this paper.

Suggested Citation

  • Wamankar, Arun Kumar & Satapathy, Ashok Kumar & Murugan, S., 2015. "Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion," Energy, Elsevier, vol. 93(P1), pages 511-520.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:511-520
    DOI: 10.1016/j.energy.2015.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soloiu, Valentin & Lewis, Jeffery & Yoshihara, Yoshinobu & Nishiwaki, Kazuie, 2011. "Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance," Energy, Elsevier, vol. 36(7), pages 4353-4371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    2. John M. Long & Michael D. Boyette, 2016. "Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry," Energies, MDPI, vol. 10(1), pages 1-11, December.
    3. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    4. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    5. Hawi, Meshack & Elwardany, Ahmed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester," Renewable Energy, Elsevier, vol. 141(C), pages 632-645.
    6. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    7. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    8. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    9. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    10. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    11. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    12. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    13. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    14. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    15. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    16. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    2. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    3. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    4. Hammerton, James M. & Li, Hu & Ross, Andrew B., 2020. "Char-diesel slurry fuels for microgeneration: Emission characteristics and engine performance," Energy, Elsevier, vol. 207(C).
    5. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayin, Cenk, 2019. "The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources," Renewable Energy, Elsevier, vol. 134(C), pages 653-668.
    6. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Muiños, Martin & Harp, Spencer & Ilie, Marcel & Zdanowicz, Andrew & Molina, Gustavo, 2018. "LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtur," Renewable Energy, Elsevier, vol. 123(C), pages 323-333.
    7. Zhu, Mingming & Zhang, Zhezi & Zhang, Yang & Liu, Pengfei & Zhang, Dongke, 2017. "An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air," Applied Energy, Elsevier, vol. 185(P2), pages 2160-2167.
    8. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    9. Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
    10. Wamankar, Arun Kumar & Murugan, S., 2015. "Review on production, characterisation and utilisation of solid fuels in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 249-262.
    11. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Knowles, Aliyah & Molina, Gustavo & Ilie, Marcel & Harp, Spencer & Wiley, Justin T., 2018. "Reactivity Controlled Compression Ignition combustion and emissions using n-butanol and methyl oleate," Energy, Elsevier, vol. 165(PB), pages 911-924.
    12. Soloiu, Valentin & Gaubert, Remi & Moncada, Jose & Wiley, Justin & Williams, Johnnie & Harp, Spencer & Ilie, Marcel & Molina, Gustavo & Mothershed, David, 2019. "Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch Fuel Blended with n-butanol," Renewable Energy, Elsevier, vol. 134(C), pages 1173-1189.
    13. Yang, Y. & Brammer, J.G. & Samanya, J. & Hossain, A.K. & Hornung, A., 2013. "Investigation into the performance and emissions of a stationary diesel engine fuelled by sewage sludge intermediate pyrolysis oil and biodiesel blends," Energy, Elsevier, vol. 62(C), pages 269-276.
    14. Wamankar, Arun Kumar & Murugan, S., 2015. "Combustion, performance and emission of a diesel engine fuelled with diesel doped with carbon black," Energy, Elsevier, vol. 86(C), pages 467-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:511-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.