IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014705.html
   My bibliography  Save this article

Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger

Author

Listed:
  • Sun, Daoan
  • Cai, Wenzhe
  • Li, Chunying
  • Lu, Jian

Abstract

High-energy-density fuels are promising fuels for advanced aero engines, especially rotary engines, in which atomization characteristics play a crucial role in fuel practical application. This work experimentally investigated the basic spray characteristics mainly including spray angle, droplet concentration, velocity, and size distribution of two liquid fuels JP-10, HEF-1 and one slurry fuel HEF-2 by PDPA technique using a fuel slinger under 10000–25000 rpm. Effects of fuel physical properties (fuel type, density, viscosity, surface tension, etc) and control parameters (rotational speed and fuel flowrate) on atomization characteristics were discussed. The results showed that the droplet number was parabolic distribution for each fuel and significantly increased with the elevated rotational speeds. Slurry fuel had the largest droplet number near the spray center due to the fragmentation effect of nano-Al particles. For liquid fuels, viscosity determined the droplet breakup below 10000 rpm. Spray angle and droplet velocity negatively related to fuel viscosity. Besides, elevated rotational speeds promoted average droplet velocities, while lowered spray angles. Overall, Sauter mean diameter (SMD) of each fuel greatly depended on fuel viscosity was arch bridge-type distribution. Slurry fuel possessed a smoother distribution with much larger SMD (55–65 μm) than liquid fuels (20–45 μm). Furthermore, the average SMD (ASMD) of JP-10 and HEF-1 gradually decreased from 58 μm to 40 μm, and 44 μm–35 μm, respectively as rotational speeds increased. Additionally, they increased by less than 20% when flowrates increased from 0.15 Lpm to 1.20 Lpm. Nevertheless, slurry fuel HEF-2 had an ASMD around 65 μm which remained almost unchanged with varying rotational speeds and flowrates.

Suggested Citation

  • Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014705
    DOI: 10.1016/j.energy.2021.121222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Jisoo & Kim, Donghwan & Seo, Jeawon & Park, Sungwook, 2020. "Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle," Energy, Elsevier, vol. 205(C).
    2. Zhou, Haiqin & Li, Xiangrong & Chen, Yanlin & Kang, Yuning & Liu, Dong & Liu, Fushui, 2020. "The effect of spray angle on the combustion and emission performance of a separated swirl combustion system in a diesel engine," Energy, Elsevier, vol. 190(C).
    3. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
    4. Soloiu, Valentin & Lewis, Jeffery & Yoshihara, Yoshinobu & Nishiwaki, Kazuie, 2011. "Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance," Energy, Elsevier, vol. 36(7), pages 4353-4371.
    5. Zhou, Yifan & Qi, Wenyuan & Zhang, Yuyin, 2020. "Investigation on cyclic variation of diesel spray and a reconsideration of penetration model," Energy, Elsevier, vol. 211(C).
    6. Yu, Yusong, 2019. "Experimental study on effects of ethanol-diesel fuel blended on spray characteristics under ultra-high injection pressure up to 350 MPa," Energy, Elsevier, vol. 186(C).
    7. Yu, Wenbin & Yang, Wenming & Mohan, Balaji & Tay, Kun Lin & Zhao, Feiyang, 2017. "Macroscopic spray characteristics of wide distillation fuel (WDF)," Applied Energy, Elsevier, vol. 185(P2), pages 1372-1382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Gaidukova & Pavel Strizhak, 2021. "Critical Conditions for the Ignition of a Gel Fuel under Different Heating Schemes," Energies, MDPI, vol. 14(21), pages 1-16, October.
    2. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ireneusz Pielecha & Sławomir Wierzbicki & Maciej Sidorowicz & Dariusz Pietras, 2021. "Combustion Thermodynamics of Ethanol, n-Heptane, and n-Butanol in a Rapid Compression Machine with a Dual Direct Injection (DDI) Supply System," Energies, MDPI, vol. 14(9), pages 1-20, May.
    2. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    3. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    4. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Ping Sun & Ze Liu & Wei Dong & Song Yang, 2019. "Comparative Study on the Effects of Ethanol Proportion on the Particle Numbers Emissions in a Combined Injection Engine," Energies, MDPI, vol. 12(9), pages 1-18, May.
    6. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    7. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    8. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    9. Zhou, Yifan & Qi, Wenyuan & Zhang, Yuyin, 2020. "Investigation on cyclic variation of diesel spray and a reconsideration of penetration model," Energy, Elsevier, vol. 211(C).
    10. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    11. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    13. Chang, Jiang & Li, Xiangrong & Liu, Yang & Liu, Lifang & Chen, Yanlin & Liu, Dong & Kang, Yuning, 2022. "Combustion performance and energy distributions in a new multi-swirl combustion system," Energy, Elsevier, vol. 256(C).
    14. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    15. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    16. Hammerton, James M. & Li, Hu & Ross, Andrew B., 2020. "Char-diesel slurry fuels for microgeneration: Emission characteristics and engine performance," Energy, Elsevier, vol. 207(C).
    17. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    18. Sattar Jabbar Murad Algayyim & Andrew P. Wandel, 2020. "Comparative Assessment of Spray Behavior, Combustion and Engine Performance of ABE-Biodiesel/Diesel as Fuel in DI Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-12, December.
    19. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    20. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.