IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics036054422031197x.html
   My bibliography  Save this article

Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle

Author

Listed:
  • Shin, Jisoo
  • Kim, Donghwan
  • Seo, Jeawon
  • Park, Sungwook

Abstract

In a gas turbine combustion system, droplet distribution in the combustor directly affects the combustion process. Fuel droplet size and droplet velocity determine the fuel droplet distribution in the combustor. The present study aims to investigate effects of physical properties on spray characteristics using computational fluid dynamics (CFD) analysis. Spray modeling was performed to analyze the spray characteristics for different fuel physical properties. The hollow cone spray of a gas turbine nozzle was modeled using a LISA (Linearized Instability Sheet Atomization)-TAB(Taylor Analogy Breakup) model with commercial CFD code called, ANSYS Fluent 16.2. The model was validated against the experimental results, which were obtained by PDPA (Phase Doppler Particle Analyzer) and spray tomography. Based on this spray model, the effect of fuel physical properties on spray characteristics were determined. In addition, because the spray patterns differed various injection fluids, the spray characteristics of the gas turbine nozzle with various injection fluids were considered from the perspective of fuel physical properties. It was found that higher density, viscosity and surface tension delayed the atomization process and that density and surface tension have a more significant effect on spray atomization, than viscosity in the catastrophic breakup regime.

Suggested Citation

  • Shin, Jisoo & Kim, Donghwan & Seo, Jeawon & Park, Sungwook, 2020. "Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s036054422031197x
    DOI: 10.1016/j.energy.2020.118090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031197X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yubiao & Alkhedhair, Abdullah M. & Guan, Zhiqiang & Hooman, Kamel, 2018. "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, Elsevier, vol. 160(C), pages 678-692.
    2. Zhou, Guanyu & Zhou, Jianhua & Fang, Yi & Yang, Xiaoyi, 2019. "Properties effect of blending fischer-tropsch aviation fuel on spray performances," Energy, Elsevier, vol. 179(C), pages 1082-1093.
    3. Jiang, Zhengwei & Gan, Yunhua & Ju, Yiguang & Liang, Jialin & Zhou, Yi, 2019. "Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor," Energy, Elsevier, vol. 179(C), pages 843-849.
    4. Yang, S.I. & Hsu, T.C. & Wu, M.S., 2016. "Spray combustion characteristics of kerosene/bio-oil part II: Numerical study," Energy, Elsevier, vol. 115(P1), pages 458-467.
    5. Khan, Mohammed Asad & Gadgil, Hrishikesh & Kumar, Sudarshan, 2019. "Influence of liquid properties on atomization characteristics of flow-blurring injector at ultra-low flow rates," Energy, Elsevier, vol. 171(C), pages 1-13.
    6. Chen, Longfei & Li, Guangze & Huang, Dongqi & Zhang, Zhichao & Lu, Yiji & Yu, Xiaoli & Roskilly, Anthony Paul, 2019. "Experimental and numerical study on the initial tip structure evolution of diesel fuel spray under various injection and ambient pressures," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gvozdyakov, Dmitry & Zenkov, Andrey, 2021. "Improvement of atomization characteristics of coal-water slurries," Energy, Elsevier, vol. 230(C).
    2. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    3. Gvozdyakov, D.V. & Zenkov, A.V. & Kaltaev, A. Zh, 2022. "Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    2. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    3. Chen, Ningguang & Gan, Yunhua & Shi, Dunfeng & Luo, Yanlai & Jiang, Zhengwei, 2023. "Experimental investigation on the electrospray counterflow flame in a small combustor with a porous media as the grounding electrode," Energy, Elsevier, vol. 284(C).
    4. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    5. He, Wei & Luo, Zhen-bing & Deng, Xiong & Peng, Can & Liu, Qiang & Gao, Tian-xiang & Cheng, Pan & Zhou, Yan & Peng, Wen-qiang, 2023. "Numerical study on the atomization mechanism and energy characteristics of synthetic jet/dual synthetic jets," Applied Energy, Elsevier, vol. 346(C).
    6. Zhou, Yifan & Qi, Wenyuan & Zhang, Yuyin, 2020. "Investigation on cyclic variation of diesel spray and a reconsideration of penetration model," Energy, Elsevier, vol. 211(C).
    7. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    8. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
    9. Marek Ochowiak & Daniel Janecki & Andżelika Krupińska & Sylwia Włodarczak & Tomasz Wilk & Radosław Olszewski, 2021. "Conical Two-Phase Swirl Flow Atomizers—Numerical and Experimental Study," Energies, MDPI, vol. 14(6), pages 1-17, March.
    10. Ma, Xin & Wang, Shuang & Li, Fashe & Zhang, Huicong & Jiang, Shang & Sui, Meng, 2022. "Effect of air flow rate and temperature on the atomization characteristics of biodiesel in internal and external flow fields of the pressure swirl nozzle," Energy, Elsevier, vol. 253(C).
    11. Zhang, Qiankun & Xia, Jin & He, Zhuoyao & Wang, Jianping & Liu, Rui & Zheng, Liang & Qian, Yong & Ju, Dehao & Lu, Xingcai, 2021. "Experimental study on spray characteristics of six-component diesel surrogate fuel under sub/trans/supercritical conditions with different injection pressures," Energy, Elsevier, vol. 218(C).
    12. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    13. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    14. Sharma, Saurabh & Chowdhury, Arindrajit & Kumar, Sudarshan, 2020. "A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor," Energy, Elsevier, vol. 194(C).
    15. Wu, M.S. & Yang, S.I., 2016. "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet," Energy, Elsevier, vol. 113(C), pages 788-795.
    16. Xu, Haojie & Wang, Junfeng & Li, Bin & Yu, Kai & Wang, Hai & Tian, Jiameng & Li, Bufa, 2022. "Electrospray characteristics and cooling performance of dielectric fluid HFE-7100," Energy, Elsevier, vol. 259(C).
    17. Buffi, Marco & Seljak, Tine & Cappelletti, Alessandro & Bettucci, Lorenzo & Valera-Medina, Agustin & Katrašnik, Tomaž & Chiaramonti, David, 2018. "Performance and emissions of liquefied wood as fuel for a small scale gas turbine," Applied Energy, Elsevier, vol. 230(C), pages 1193-1204.
    18. Sun, Yubiao & Duniam, Sam & Guan, Zhiqiang & Gurgenci, Hal & Dong, Peixin & Wang, Jianyong & Hooman, Kamel, 2019. "Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Nihasigaye, Pierre Boris & Zhou, Guanyu & Yang, Xiaoyi, 2021. "Modelling spray performance of alternative aviation fuel," Energy, Elsevier, vol. 224(C).
    20. Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s036054422031197x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.