IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025197.html
   My bibliography  Save this article

The properties of sustainable aviation fuel I: Spray characteristics

Author

Listed:
  • Lin, Jhe-Kai
  • Nurazaq, Warit Abi
  • Wang, Wei-Cheng

Abstract

This study measures the spray penetration, spray angle and spray volume of sustainable aviation fuel (SAF) experimentally using an optical constant volume combustion chamber under different ambient temperatures, injection pressures, and ambient pressures. The results show that when the ambient temperature increases from 200 °C to 300 °C, the spray penetration decreases by ∽10%–20%, while it further decreases by ∽40%–50% when the temperature increases from 300 °C to 400 °C. Furthermore, the spray penetration of SAF will reach its stable stage fastest at 400 °C. As the ambient temperature increases, the spray angle and spray volume of SAF decreased by 10%–20% and 50%, respectively. In addition, the spray penetration and spray volume of SAF increased by 10% and 20%, respectively, with an increase in injection pressure at 200 °C. An increase in injection pressure at 400 °C causes the decrease in spray penetration and spray volume of SAF by 20%, and both of them showed increasing and decreasing trends at the stable stage. Thus, increase in injection pressure has little effect on the spray angle. Moreover, the spray penetration and spray volume of SAF showed a decreasing trend on increasing ambient pressure, but significant effect was observed at a high temperature of 400 °C than at a low temperature of 200 °C. Conversely, the spray angle of SAF showed an increasing trend with an increase in ambient pressure, but this influence was larger at a low temperature of 200 °C than that at a high temperature of 400 °C.

Suggested Citation

  • Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025197
    DOI: 10.1016/j.energy.2023.129125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.