IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225003020.html
   My bibliography  Save this article

Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment

Author

Listed:
  • Cheng, Tengfei
  • Duan, Ruiling
  • Li, Xueyi
  • Yan, Xiaodong
  • Yang, Xiyu
  • Shi, Cheng

Abstract

The global greenhouse effect has intensified, and adopting carbon-free fuels in internal combustion engines to replace traditional fossil energy has become a key strategy for energy conservation and emission reduction. To optimize the combustion efficiency and stability of the ammonia-diesel dual-fuel engine, this study proposes a diesel main pulse split injection strategy. The effects of key parameters in the split injection strategy on the combustion characteristics and emission performance of the engine were systematically analyzed using computational fluid dynamics simulation methods. The results reveal that the optimized split injection strategy can effectively promote the uniform distribution of the mixture under the ammonia-diesel dual-fuel mode, thus achieving a more thorough and rapid combustion process. At the ammonia energy fraction of 40 %, better performance can be obtained. Appropriately increasing the proportion of diesel fuel in the first pulse of injection significantly facilitates the combustion process, accelerates the ammonia flame propagation, and reduces the problem of high unburned ammonia emissions compared to the single injection strategy. In addition, by adjusting the dwell between the two pulses, an optimal dwell between the two pulses can be obtained, promoting the diesel injected in the second pulse to accelerate the combustion process of the residual ammonia in the combustion chamber. An in-depth study of the second injection pulse width shows that a narrower secondary injection pulse width is beneficial to the optimization of engine performance. Quantitative analysis indicates that the scheme applying 40 % ammonia energy fraction and combining it with the optimized split injection strategy provides a certain increase in the efficiency of the engine. Furthermore, the study discovered that under the ammonia-diesel dual-fuel mode, unburned ammonia and HC emissions can be reduced to near-zero levels. Compared to the single injection of diesel, this strategy reduces by 30.9 % in NOx and 36.2 % in greenhouse gas emissions.

Suggested Citation

  • Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225003020
    DOI: 10.1016/j.energy.2025.134660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Xiaodong & Nie, Fuquan & Cui, Huasheng & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Wang, Yahui, 2024. "Research on the impacts of operating frequency at combustion process for opposed single-cylinder free piston generator under direct injection," Energy, Elsevier, vol. 299(C).
    2. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    4. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    5. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    7. Jin, Zhuoying & Mi, Shijie & Zhou, Dezhi & Zhu, Jizhen & Schirru, Andrea & Zhao, Wenbin & Qian, Yong & Lucchini, Tommaso & Lu, Xingcai, 2024. "Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions," Applied Energy, Elsevier, vol. 373(C).
    8. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    9. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    2. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    3. Yang, Xiyu & Yang, Fangliang & Li, Nan & Zhang, Liang & Lei, Jian & Shi, Cheng & Bai, Yun & Dong, Quan, 2024. "Study on prediction of gas injection mass fluctuation for hydrogen-diesel co-direct injection system: A prediction algorithm driven by model and perception iterative," Energy, Elsevier, vol. 308(C).
    4. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    5. Liu, Xiangtao & Si, Jicang & Wang, Guochang & Wu, Mengwei & Mi, Jianchun, 2025. "Nitrogen sources and formation routes of nitric oxide from pure ammonia combustion," Energy, Elsevier, vol. 315(C).
    6. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    7. Sun, Wanchen & Wang, Xiaonan & Guo, Liang & Zhang, Hao & Zeng, Wenpeng & Lin, Shaodian & Zhu, Genan & Jiang, Mengqi & Ma, Xiaoyu, 2025. "Study on effects of EGR and injection strategies on the combustion and emission characteristics of ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 315(C).
    8. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    9. Zhonghao Zhao & Yingtao Wu, 2025. "Standardizing the Ignition Delay Time Measurements of Rapid Compression Machine: An Inverse Application of the Livengood–Wu Integral Method," Energies, MDPI, vol. 18(1), pages 1-14, January.
    10. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Huang, Liyong & Xing, Shikai, 2021. "Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios," Renewable Energy, Elsevier, vol. 179(C), pages 1204-1216.
    11. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    12. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    13. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    14. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    15. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    16. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    17. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    19. Moosazadeh, Mohammad & Mansourimarand, Asal & Ajori, Shahram & Taghikhani, Vahid & Yoo, ChangKyoo, 2025. "Waste-to-Ammonia: A sustainable pathway for energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225003020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.