IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004141.html
   My bibliography  Save this article

Combined effect of chamber geometry and compression ratio on the combustion process in a methanol-enriched rotary engine

Author

Listed:
  • Sun, Bo
  • Wang, Yuyao
  • Shi, Cheng
  • Nie, Fuquan
  • Yan, Xiaodong

Abstract

The combustion process within a methanol-enriched gasoline rotary engine is being studied to understand how the geometry of the combustion chamber and the ratio of methanol blending influence it. The rotary engine model was developed, combined with a streamlined methanol-gasoline reaction kinetics model, to emulate the effects of diverse recess geometric configurations on combustion. The research findings indicate that even minor adjustments to the recess volume can significantly enhance in-cylinder turbulence levels during the intake stroke. Notably, reducing the recess length achieved higher turbulent dissipation at ignition, thereby promoting the propagation of the initial flame kernel. Under high compression ratio conditions, optimizing the recess geometric parameters effectively improved combustion efficiency and reduced emissions. The CR9.5W configuration is recommended for adoption, as it significantly lowered unburned hydrocarbon and NOx emissions while enhancing combustion efficiency. This work provides a potential direction for performance enhancement in rotary engines. However, the reduction in the size of the recess restricts heat and mass exchange between the anterior and posterior sections of the combustion chamber. This phenomenon potentially causes significant fluctuations in the combustion process and increases the risk of knock.

Suggested Citation

  • Sun, Bo & Wang, Yuyao & Shi, Cheng & Nie, Fuquan & Yan, Xiaodong, 2025. "Combined effect of chamber geometry and compression ratio on the combustion process in a methanol-enriched rotary engine," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004141
    DOI: 10.1016/j.energy.2025.134772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
    2. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    3. Zeng, Yonghao & Fan, Baowei & Pan, Jianfeng & He, Ren & Fang, Jia & Salami, Hammed Adeniyi & Wu, Xin, 2022. "Research on the ignition strategy of a methanol/gasoline blends rotary engine using turbulent jet ignition mode," Energy, Elsevier, vol. 261(PA).
    4. Gao, Jianbing & Zhang, Huijie & Li, Juxia & Wang, Yufeng & Tian, Guohong & Ma, Chaochen & Wang, Xiaochen, 2022. "Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine," Renewable Energy, Elsevier, vol. 187(C), pages 428-439.
    5. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    6. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
    7. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    8. Jiang, Yankun & Chen, Yexin & Xie, Man, 2022. "Effects of blending dissociated methanol gas with the fuel in gasoline engine," Energy, Elsevier, vol. 247(C).
    9. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    10. Sadiq Y, Ragadia & Iyer, Rajesh C., 2020. "Experimental investigations on the influence of compression ratio and piston crown geometry on the performance of biogas fuelled small spark ignition engine," Renewable Energy, Elsevier, vol. 146(C), pages 997-1009.
    11. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Bao, Jianhui & Yang, Jinxin, 2019. "Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    2. Lei, Jian & Zhang, Shiqi & Bao, Jianhui & Xin, Gu & Yang, Xiyu & Shi, Cheng, 2025. "The low-carbon transition of rotary engines: Potential and challenges of alcohol fuels," Energy, Elsevier, vol. 320(C).
    3. Shi, Cheng & Lei, Jian & Tian, Guohong & Ma, Zedong & Yang, Xiyu & Zhu, Jian, 2025. "Numerical investigation on recess geometry amelioration of an ammonia-hydrogen zero-carbon Wankel engine," Renewable Energy, Elsevier, vol. 242(C).
    4. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    5. Shi, Cheng & Duan, Ruiling & Cheng, Tengfei & Nie, Fuquan & Yan, Xiaodong & Zhu, Jian, 2025. "Understanding the role of ammonia combined injection in improving combustion and emissions characteristics for heavy-duty CI engine," Energy, Elsevier, vol. 324(C).
    6. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    7. Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
    8. Yang, Zhenghao & Du, Yang & Gao, Xu & Zhang, Zeqi & Geng, Qi & He, Guangyu, 2024. "Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition," Energy, Elsevier, vol. 307(C).
    9. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    10. Yang, Xiyu & Yang, Fangliang & Li, Nan & Zhang, Liang & Lei, Jian & Shi, Cheng & Bai, Yun & Dong, Quan, 2024. "Study on prediction of gas injection mass fluctuation for hydrogen-diesel co-direct injection system: A prediction algorithm driven by model and perception iterative," Energy, Elsevier, vol. 308(C).
    11. Meng, Hao & Zhan, Qiang & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng, 2025. "Comprehensive multi-performance research of hydrogen-fueled Wankel rotary engine by experimental and data-driven methods," Energy, Elsevier, vol. 319(C).
    12. Wang, Yongjian & Long, Wuqiang & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Lu, Mingfei & Zhang, Weiqi, 2024. "Experimental investigation of knock control criterion considering power output loss for a PFI SI methanol marine engine," Energy, Elsevier, vol. 303(C).
    13. Fan, Baowei & Huo, Siquan & Pan, Jianfeng & Yang, Wenming & Li, Wei & Wu, Yingxin & Lu, Qingbo & Jiang, Chao, 2024. "Optimizing injection strategies for improved combustion performance in turbulence jet ignition rotary engines," Energy, Elsevier, vol. 313(C).
    14. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    15. Zhong, Shunbin & Ou, Kai & Jin, Zemin & Zhang, Qian & Zhang, Xuezhi & Wang, Ya-Xiong, 2025. "Improved optimal sliding mode control and operating strategy for turbine-based air compressor in automotive fuel cells with driving cycles analysis," Energy, Elsevier, vol. 324(C).
    16. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    17. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    18. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    20. Xiangyang, Wang & Yu, Liu & Xiaoping, Li & Beiping, Jiang & Fangxi, Xie & Zhaohui, Jin & Huili, Dou, 2025. "Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition," Energy, Elsevier, vol. 321(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.