IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038039.html
   My bibliography  Save this article

Optimizing injection strategies for improved combustion performance in turbulence jet ignition rotary engines

Author

Listed:
  • Fan, Baowei
  • Huo, Siquan
  • Pan, Jianfeng
  • Yang, Wenming
  • Li, Wei
  • Wu, Yingxin
  • Lu, Qingbo
  • Jiang, Chao

Abstract

Methanol gasoline fuel blends is considered one of the novel alternative fuels for improving the thermal efficiency and atomization of the rotary engine. In order to further study the combustion performance of the methanol gasoline fuel blends rotary engine, an experimental test bench and numerical simulation model were established. On this basis, the in-cylinder flow and combustion performance of rotary engines with various injection strategies were investigated. The results indicated that increasing the nozzle diameter and decreasing the spray cone angle both resulted in the forward movement of the high-concentration fuel zone. To be specific, when the high-concentration fuel zone was concentrated in the middle of the cylinder and around the pre-chamber orifice, it facilitated the formation of a large-scale vortex. This vortex was beneficial for flame propagation, thereby enabling the attainment of maximum indicated thermal efficiency. Compared with the other injector parameters, adopting the 0.22 mm nozzle diameter and a 15° spray cone angle were conducive to improving the combustion speed and the indicated thermal efficiency. This improvement was attributed to enhanced fuel distribution and flow field, highlighting the contribution of injection strategies and turbulence jet ignition.

Suggested Citation

  • Fan, Baowei & Huo, Siquan & Pan, Jianfeng & Yang, Wenming & Li, Wei & Wu, Yingxin & Lu, Qingbo & Jiang, Chao, 2024. "Optimizing injection strategies for improved combustion performance in turbulence jet ignition rotary engines," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038039
    DOI: 10.1016/j.energy.2024.134025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hui & Wang, Zhi & Wang, Jianxin, 2014. "Methanol-gasoline DFSI (dual-fuel spark ignition) combustion with dual-injection for engine knock suppression," Energy, Elsevier, vol. 73(C), pages 686-693.
    2. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Xin, Gu & Meng, Hao, 2022. "Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine," Energy, Elsevier, vol. 254(PB).
    3. Zeng, Yonghao & Fan, Baowei & Pan, Jianfeng & He, Ren & Fang, Jia & Salami, Hammed Adeniyi & Wu, Xin, 2022. "Research on the ignition strategy of a methanol/gasoline blends rotary engine using turbulent jet ignition mode," Energy, Elsevier, vol. 261(PA).
    4. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
    5. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    6. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    2. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    3. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    4. Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
    5. Zhang, Yuxin & Yang, Yalian & Zou, Yunge & Liu, Changdong, 2024. "Design of optimal control strategy for range extended electric vehicles considering additional noise, vibration and harshness constraints," Energy, Elsevier, vol. 310(C).
    6. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    7. Fan, Baowei & Song, Anqi & Liu, Weikang & Jiang, Pengfei & Xu, Linxun & Pan, Jianfeng & Zhang, Yi, 2024. "Potential improvement in combustion performance of a natural gas rotary engine mixed with hydrogen by novel bluff-body," Energy, Elsevier, vol. 295(C).
    8. Omkar Parkar & Benjamin Snyder & Adibuzzaman Rahi & Sohel Anwar, 2023. "Modified Particle Swarm Optimization Based Powertrain Energy Management for Range Extended Electric Vehicle," Energies, MDPI, vol. 16(13), pages 1-21, June.
    9. Liu, Hui & Wang, Zhi & Long, Yan & Xiang, Shouzhi & Wang, Jianxin & Wagnon, Scott W., 2015. "Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement," Energy, Elsevier, vol. 89(C), pages 1010-1017.
    10. Gao, Jianbing & Zhang, Huijie & Li, Juxia & Wang, Yufeng & Tian, Guohong & Ma, Chaochen & Wang, Xiaochen, 2022. "Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine," Renewable Energy, Elsevier, vol. 187(C), pages 428-439.
    11. Yang, Zhenghao & Du, Yang & Jia, Guangyu & Gao, Xu & He, Guangyu & Wang, Zhengbiao, 2025. "Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment," Energy, Elsevier, vol. 316(C).
    12. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    13. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    14. Dongwei Yao & Xinwei Lu & Xiangyun Chao & Yongguang Zhang & Junhao Shen & Fanlong Zeng & Ziyan Zhang & Feng Wu, 2023. "Adaptive Equivalent Fuel Consumption Minimization Based Energy Management Strategy for Extended-Range Electric Vehicle," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    15. Liu, Haoye & Wang, Zhi & Li, Yanfei & Zheng, Yanyan & He, Tanjin & Wang, Jianxin, 2019. "Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers," Applied Energy, Elsevier, vol. 233, pages 599-611.
    16. Diming Lou & Yinghua Zhao & Liang Fang & Yuanzhi Tang & Caihua Zhuang, 2022. "Encoder–Decoder-Based Velocity Prediction Modelling for Passenger Vehicles Coupled with Driving Pattern Recognition," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    17. Young-Jic Kim & A-Sun Yoon & Chang-Eon Lee, 2025. "Validation of CFD Analysis on Flow and Combustion Characteristics for a GP3 Rotary Engine," Energies, MDPI, vol. 18(4), pages 1-22, February.
    18. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    19. Liu, Haoye & Wang, Zhi & Zhang, Jun & Wang, Jianxin & Shuai, Shijin, 2017. "Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines," Applied Energy, Elsevier, vol. 185(P2), pages 1393-1402.
    20. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.