IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222027013.html
   My bibliography  Save this article

Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine

Author

Listed:
  • Meng, Hao
  • Ji, Changwei
  • Shen, Jianpu
  • Yang, Jinxin
  • Xin, Gu
  • Chang, Ke
  • Wang, Shuofeng

Abstract

Hydrogen-fueled Wankel rotary engine (HWRE), as a high power density and eco-friendly internal combustion engine, has the potential to become an alternative for gasoline-fueled piston engines. Cooled EGR, as an effective means of improving engine performance, is less studied based on HWRE. However, due to the different operating way and structure, the flame development and propagation of WRE are significantly different from those of the piston engine, so may the effect of cooled EGR. Hence, the goal of present work is to analyze the effect of cooled EGR on the combustion characteristics of HWRE. This work is conducted under 1500 r/min and wide-open throttle conditions. The results show that when the ignition timing and excess air ratio are fixed at 5°CA ATDC and 1, the cooled EGR level has a significant influence on the combustion process and operating stability. In addition, when maximum brake torque CA50 is employed, within test range, whether stoichiometric or lean combustion, both the brake torque and brake thermal efficiency are monotonous to the cooled EGR level. And cooled EGR can achieve high brake thermal efficiency compared with lean combustion at the same brake torque. Compared with the hydrogen-fueled piston engine, HWRE allows for a higher cooled EGR level whether in terms of efficiency or power output considerations. In general, the cooled EGR can be used as an excellent load control means to achieve high efficiency of HWRE.

Suggested Citation

  • Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027013
    DOI: 10.1016/j.energy.2022.125815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    2. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
    3. Meng, Hao & Ji, Changwei & Su, Teng & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 250(C).
    4. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    5. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    6. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    7. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cruz, José Ramón Serrano & López, J. Javier & Climent, Héctor & Gómez-Vilanova, Alejandro, 2023. "Method for turbocharging and supercharging 2-stroke engines, applied to an opposed-piston new concept for hybrid powertrains," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Jiao, Huichao & Ye, Xianlei & Zou, Run & Wang, Nana & Liu, Jinxiang, 2022. "Comparative study on ignition and combustion between conventional spark-ignition method and near-wall surface ignition method for small-scale Wankel rotary engine," Energy, Elsevier, vol. 255(C).
    3. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    4. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    5. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    6. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    7. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    8. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    9. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    10. Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
    11. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    12. Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
    13. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    14. Hwang, Joonsik & Kim, Wooyeong & Bae, Choongsik & Choe, Wonho & Cha, Jeonghwa & Woo, Soohyung, 2017. "Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine," Applied Energy, Elsevier, vol. 205(C), pages 562-576.
    15. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    16. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    17. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng, 2013. "Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation," Energy, Elsevier, vol. 50(C), pages 150-159.
    18. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    19. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    20. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.