IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v105y2013icp99-107.html
   My bibliography  Save this article

Effects of exhaust gas recycle in a downsized gasoline engine

Author

Listed:
  • Galloni, E.
  • Fontana, G.
  • Palmaccio, R.

Abstract

Lately, the exhaust gas recycle usage, widely diffused in Diesel engines, has been adopted in SI engines as well. It is a cheap technique which allows a sound control of NO formation meanwhile it can improve engine thermodynamics.

Suggested Citation

  • Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
  • Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:99-107
    DOI: 10.1016/j.apenergy.2012.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912009373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    2. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    3. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    4. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
    3. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Hwang, Joonsik & Kim, Wooyeong & Bae, Choongsik & Choe, Wonho & Cha, Jeonghwa & Woo, Soohyung, 2017. "Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine," Applied Energy, Elsevier, vol. 205(C), pages 562-576.
    5. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    6. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    7. Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
    8. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    9. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    10. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    11. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    12. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    13. Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
    14. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    15. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    16. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    17. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    18. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    19. Han, Xiaoye & Yu, Shui & Tjong, Jimi & Zheng, Ming, 2020. "Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    2. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    3. Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
    4. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    5. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    6. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    8. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    9. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    10. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    11. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    12. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    13. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    14. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    15. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng, 2013. "Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation," Energy, Elsevier, vol. 50(C), pages 150-159.
    16. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    17. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    18. Benajes, Jesús & Olmeda, Pablo & Martín, Jaime & Blanco-Cavero, Diego & Warey, Alok, 2017. "Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine," Energy, Elsevier, vol. 122(C), pages 168-181.
    19. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    20. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:105:y:2013:i:c:p:99-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.