IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008491.html
   My bibliography  Save this article

Potential improvement in combustion performance of a natural gas rotary engine mixed with hydrogen by novel bluff-body

Author

Listed:
  • Fan, Baowei
  • Song, Anqi
  • Liu, Weikang
  • Jiang, Pengfei
  • Xu, Linxun
  • Pan, Jianfeng
  • Zhang, Yi

Abstract

Hydrogen/natural gas blends fuel is considered one of the ideal alternative fuels for improving the thermal efficiency and reducing carbon emissions of rotary engine. In order to further enhance the combustion and power performance of rotary engine, a new method of the setting of bluff bodies in the cylinder was proposed. The influence of bluff-body settings in the cylinder on the combustion, power performance, and NO generation was numerically studied under different ignition timings. The results indicated that in-cylinder bluff-body settings could influence flame propagation by affecting the turbulent kinetic energy and mixture distribution during the process from the late compression stroke to the combustion stroke. Further, for any fixed bluff-body shape in the cylinder, there is a trade-off relationship between the non-blockage ratio and squish velocity at the cylinder block center section as the ignition timing is progressively advanced or delayed. Consequently, considering the above trade-off relationship, the triangular slotted bluff-body in combination with an ignition timing of 30° CA (BTDC) could be used to achieve the maximum improvement in the combustion and power performance of rotary engine. The peak pressure exhibited a growth of 4.83%, and the indicated mean effective pressure increased by 1.46%.

Suggested Citation

  • Fan, Baowei & Song, Anqi & Liu, Weikang & Jiang, Pengfei & Xu, Linxun & Pan, Jianfeng & Zhang, Yi, 2024. "Potential improvement in combustion performance of a natural gas rotary engine mixed with hydrogen by novel bluff-body," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008491
    DOI: 10.1016/j.energy.2024.131077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.