IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp1204-1216.html
   My bibliography  Save this article

Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios

Author

Listed:
  • Gao, Jianbing
  • Tian, Guohong
  • Ma, Chaochen
  • Huang, Liyong
  • Xing, Shikai

Abstract

Opposed rotary piston (ORP) engines can deliver high power density and have few moving parts, being suitable for the power sources of hybrid electric vehicles, range extended electric vehicles, and unmanned aerial vehicles. Hydrogen as a promising alternative fuel is free of carbon emissions during combustion. Hydrogen direct injection avoids the significant power losses of port injection scenarios resulting from the low hydrogen energy density by volume. This paper firstly investigated the ORP engine performance using a 3D numerical simulation method over various hydrogen direct injection strategies (start of hydrogen injection and injection durations). Hydrogen diffusions in combustion chambers, combustion characteristics, engine performance, nitrogen oxides (NOx) emissions, and knock tendency were researched over various hydrogen injection strategies. Hydrogen was unevenly distributed in the combustion chambers for high equivalence ratio scenarios, leading to low combustion efficiency; additionally, the unburned hydrogen was mainly in the cylinder bowls and bottoms. Combustion durations were the shortest within the equivalence ratio range of 0.577–0.865, being approximately 18° crank angle (CA). The maximum in-cylinder pressure was higher than 8.0 MPa over the equivalence ratio of 0.961; and the corresponding heat release rates were higher than 45 J·(°CA)−1. The indicated thermal efficiency was higher than 38%, and it was increased generally by dropping equivalence ratios, with the maximum efficiency being approximately 42.5%. NOx emission factors, approximately 35 g (kW h)−1, reached the maximum value under the equivalence ratio of 0.673 conditions. Knock tendency was decreased continuously by lowering equivalence ratios. This research made a foundation of improving the engine fuel economy and mitigating NOx emissions for hydrogen direct injection ORP engines.

Suggested Citation

  • Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Huang, Liyong & Xing, Shikai, 2021. "Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios," Renewable Energy, Elsevier, vol. 179(C), pages 1204-1216.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1204-1216
    DOI: 10.1016/j.renene.2021.07.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    2. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    3. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Xing, Shikai & Jenner, Phil, 2021. "Performance explorations of a naturally aspirated opposed rotary piston engine fuelled with hydrogen under part load and stoichiometric conditions using a numerical simulation approach," Energy, Elsevier, vol. 222(C).
    4. Trost, Tobias & Sterner, Michael & Bruckner, Thomas, 2017. "Impact of electric vehicles and synthetic gaseous fuels on final energy consumption and carbon dioxide emissions in Germany based on long-term vehicle fleet modelling," Energy, Elsevier, vol. 141(C), pages 1215-1225.
    5. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Junfeng & Gao, Jianbing & Wang, Yufeng & Yang, Ce & Ma, Chaochen & Tian, Guohong, 2023. "Effect of asymmetric fuel injection on combustion characteristics and NOx emissions of a hydrogen opposed rotary piston engine," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    2. Gao, Jianbing & Zhang, Huijie & Li, Juxia & Wang, Yufeng & Tian, Guohong & Ma, Chaochen & Wang, Xiaochen, 2022. "Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine," Renewable Energy, Elsevier, vol. 187(C), pages 428-439.
    3. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Xing, Shikai & Jenner, Phil, 2021. "Performance explorations of a naturally aspirated opposed rotary piston engine fuelled with hydrogen under part load and stoichiometric conditions using a numerical simulation approach," Energy, Elsevier, vol. 222(C).
    4. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
    5. Zeng, Yonghao & Fan, Baowei & Pan, Jianfeng & He, Ren & Fang, Jia & Salami, Hammed Adeniyi & Wu, Xin, 2022. "Research on the ignition strategy of a methanol/gasoline blends rotary engine using turbulent jet ignition mode," Energy, Elsevier, vol. 261(PA).
    6. Huang, Junfeng & Gao, Jianbing & Wang, Yufeng & Yang, Ce & Ma, Chaochen & Tian, Guohong, 2023. "Effect of asymmetric fuel injection on combustion characteristics and NOx emissions of a hydrogen opposed rotary piston engine," Energy, Elsevier, vol. 262(PB).
    7. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    8. Frischmuth, Felix & Härtel, Philipp, 2022. "Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe," Energy, Elsevier, vol. 238(PB).
    9. Katarzyna Markowska & Agnieszka Sękala & Kinga Stecuła & Tomasz Kawka & Kirill Sirovitskiy & Oksana Pankova & Nataliia Vnukova & Mikhail Shulyak & Serhii Kharchenko & Taras Shchur & Ewa Siudyka, 2023. "Comparison of the Sustainability and Economic Efficiency of an Electric Car and an Aircraft—A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    10. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    11. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    12. Mohamed Abdallah & Ahmad Shabib & Abdul Razak Alozi & Mohamed Hussein, 2022. "A multisectoral assessment framework for the carbon footprint of integrated sustainable development systems in Dubai," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6246-6270, May.
    13. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    14. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    15. Yining Zhang & Zhong Wu, 2021. "Research on the spatial association network structure for innovation efficiency of China’s new energy vehicle industry and its influencing factors," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-17, August.
    16. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2021. "A design methodology for selecting energy-efficient compound split e-CVT hybrid systems with planetary gearsets based on electric circulation," Energy, Elsevier, vol. 230(C).
    17. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    18. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2020. "Evaluation of driving performance and energy efficiency for a novel full hybrid system with dual-motor electric drive and integrated input- and output-split e-CVT," Energy, Elsevier, vol. 191(C).
    19. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    20. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1204-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.