IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225013854.html
   My bibliography  Save this article

Improved optimal sliding mode control and operating strategy for turbine-based air compressor in automotive fuel cells with driving cycles analysis

Author

Listed:
  • Zhong, Shunbin
  • Ou, Kai
  • Jin, Zemin
  • Zhang, Qian
  • Zhang, Xuezhi
  • Wang, Ya-Xiong

Abstract

Fuel cells are developing towards high power output. As a key auxiliary component of fuel cell systems, adopting a turbine-based air compressor combined with energy recovery technology can effectively reduce parasitic power consumption. However, the ultra-high speed and expansion torque interference of compressors pose challenges for control and management. To improve the output stability of the air compressor and enhance the system efficiency, a coupling model (mean-relative error of 6.313 %) including the compressor static characteristics and motor dynamics is established, and an optimal sliding mode surface containing all system state matrix and weighted matrix information is designed to achieve compressor superior dynamic and steady-state performance, and an operating strategy of the compressor by regulating oxygen excess ratio is developed to avoid the expansion end working inefficiently. Numerical simulations were conducted under the China heavy-duty commercial vehicle test cycle (CHTC). Compared to traditional methods, the speed control root-mean-square error was reduced by 2.67 %, and the power consumption of the compressor was also lowered. Furthermore, the hardware-in-the-loop test results were in high agreement with the simulations, confirming the feasibility of the proposed controller. The proposed control strategy could significantly improve the performance of the turbine-based air compressor and indicates the practical feasibility.

Suggested Citation

  • Zhong, Shunbin & Ou, Kai & Jin, Zemin & Zhang, Qian & Zhang, Xuezhi & Wang, Ya-Xiong, 2025. "Improved optimal sliding mode control and operating strategy for turbine-based air compressor in automotive fuel cells with driving cycles analysis," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013854
    DOI: 10.1016/j.energy.2025.135743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).
    2. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Quan, Shengwei & He, Hongwen & Chen, Jinzhou & Zhang, Zhendong & Han, Ruoyan & Wang, Ya-Xiong, 2023. "Health-aware model predictive energy management for fuel cell electric vehicle based on hybrid modeling method," Energy, Elsevier, vol. 278(PA).
    4. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    5. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    6. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    7. Wang, Jun & Han, Yi & Pan, Shiyang & Wang, Zengli & Cui, Dong & Geng, Maofei, 2022. "Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 199(C), pages 840-851.
    8. Wang, Jun-Cheng & Wang, Fa-Hui & Wang, Ya-Xiong & Chen, Shi-An, 2023. "Analysis of real-time energy losses of electric vehicle caused by non-stationary road irregularity," Energy, Elsevier, vol. 282(C).
    9. Wang, Ya-Xiong & Chen, Quan & Zhang, Jin & He, Hongwen, 2021. "Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control," Energy, Elsevier, vol. 220(C).
    10. Tirnovan, R. & Giurgea, S. & Miraoui, A. & Cirrincione, M., 2008. "Surrogate modelling of compressor characteristics for fuel-cell applications," Applied Energy, Elsevier, vol. 85(5), pages 394-403, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yan & Qi, Baohui & Wang, Siyu & Ma, Qian & Sui, Zhen & Gao, Jinwu, 2025. "Real-time energy management of fuel cell hybrid electric vehicle based on variable horizon velocity prediction considering power source durability," Energy, Elsevier, vol. 315(C).
    2. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    3. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    4. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    5. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    6. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    7. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    8. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
    9. Shen, Yaorui & Yang, Hanqian & Fu, Jianqin & Sun, Xilei, 2024. "Effect of wide reactant relative humidity on PEMFC electrochemical and thermodynamic performance from both global and local perspectives," Energy, Elsevier, vol. 313(C).
    10. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    11. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    12. Wei Li & Jisheng Liu & Pengcheng Fang & Jinxin Cheng, 2021. "A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System," Energies, MDPI, vol. 14(9), pages 1-25, May.
    13. Seongku Heo & Jaeyoo Choi & Yooseong Park & Neil Vaz & Hyunchul Ju, 2024. "Reliability-Based Design Optimization of the PEMFC Flow Field with Consideration of Statistical Uncertainty of Design Variables," Energies, MDPI, vol. 17(8), pages 1-27, April.
    14. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    15. Milosavljevic, Predrag & Marchetti, Alejandro G. & Cortinovis, Andrea & Faulwasser, Timm & Mercangöz, Mehmet & Bonvin, Dominique, 2020. "Real-time optimization of load sharing for gas compressors in the presence of uncertainty," Applied Energy, Elsevier, vol. 272(C).
    16. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Kim, Dong-Min & Chin, Jun-Woo & Kim, Jae-Hyun & Lim, Myung-Seop, 2023. "Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles," Energy, Elsevier, vol. 283(C).
    18. Wang, Zhen & Zhao, Rongchao & Zhu, Zhiyong & Zhuge, Weilin & Zhang, Yangjun, 2024. "A novel multi-objective optimization scheme of electric turbo compressor system in hydrogen fuel cell for reducing energy consumption and axial thrust," Energy, Elsevier, vol. 309(C).
    19. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    20. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.