IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp147-157.html
   My bibliography  Save this article

Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow

Author

Listed:
  • Bizon, Nicu

Abstract

An advanced control of the air compressor for the Proton Exchange Membrane Fuel Cell (PEMFC) system is proposed in this paper based on Extremum Seeking (ES) control scheme. The FC net power is mainly depended on the air and hydrogen flow rate and pressure, and heat and water management. This paper proposes to compute the optimal value for the air flow rate based on the advanced ES control scheme in order to maximize the FC net power. In this way, the Maximum Efficiency Point (MEP) will be tracked in real time, with about 10kW/s search speed and a stationary accuracy of 0.99. Thus, energy efficiency will be close to the maximum value that can be obtained for a given PEMFC stack and compressor group under dynamic load. It is shown that the MEP tracking allows an increasing of the FC net power with 3–12%, depending on the percentage of the FC power supplied to the compressor and the level of the load power. Simulations shows that the performances mentioned above are effective.

Suggested Citation

  • Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:147-157
    DOI: 10.1016/j.apenergy.2014.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bizon, N., 2010. "On tracking robustness in adaptive extremum seeking control of the fuel cell power plants," Applied Energy, Elsevier, vol. 87(10), pages 3115-3130, October.
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
    4. Dochain, Denis & Perrier, Michel & Guay, Martin, 2011. "Extremum seeking control and its application to process and reaction systems: A survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(3), pages 369-380.
    5. Tirnovan, R. & Giurgea, S. & Miraoui, A., 2011. "Strategies for optimizing the opening of the outlet air circuit's nozzle to improve the efficiency of the PEMFC generator," Applied Energy, Elsevier, vol. 88(4), pages 1197-1204, April.
    6. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    7. Segura, Francisca & Andújar, José Manuel, 2012. "Power management based on sliding control applied to fuel cell systems: A further step towards the hybrid control concept," Applied Energy, Elsevier, vol. 99(C), pages 213-225.
    8. Jannelli, Elio & Minutillo, Mariagiovanna & Perna, Alessandra, 2013. "Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances," Applied Energy, Elsevier, vol. 108(C), pages 82-91.
    9. Tirnovan, R. & Giurgea, S. & Miraoui, A. & Cirrincione, M., 2008. "Surrogate modelling of compressor characteristics for fuel-cell applications," Applied Energy, Elsevier, vol. 85(5), pages 394-403, May.
    10. Ramos-Paja, Carlos Andrés & Spagnuolo, Giovanni & Petrone, Giovanni & Mamarelis, Emilio, 2014. "A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation," Applied Energy, Elsevier, vol. 119(C), pages 21-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    3. Florentina Magda Enescu & Fernando Georgel Birleanu & Maria Simona Raboaca & Mircea Raceanu & Nicu Bizon & Phatiphat Thounthong, 2023. "Electric Vehicle Charging Station Based on Photovoltaic Energy with or without the Support of a Fuel Cell–Electrolyzer Unit," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    5. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Nurdin, Hendra I. & Benmouna, Amel & Zhu, Bin & Chen, Jiayin & Becherif, Mohamed & Hissel, Daniel & Fletcher, John, 2024. "Maximum efficiency points of a proton-exchange membrane fuel cell system: Theory and experiments," Applied Energy, Elsevier, vol. 359(C).
    8. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    9. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    10. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Bizon, Nicu & Thounthong, Phatiphat, 2018. "Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1089-1102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2013. "Energy harvesting from the FC stack that operates using the MPP tracking based on modified extremum seeking control," Applied Energy, Elsevier, vol. 104(C), pages 326-336.
    2. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    5. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    6. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    7. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    8. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control," Applied Energy, Elsevier, vol. 88(7), pages 2559-2573, July.
    9. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    10. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
    11. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part II - Current control," Applied Energy, Elsevier, vol. 88(7), pages 2574-2591, July.
    12. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    13. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    14. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    15. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    16. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    17. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    18. Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
    19. Chakraborty, Uttara, 2016. "Fuel crossover and internal current in proton exchange membrane fuel cell modeling," Applied Energy, Elsevier, vol. 163(C), pages 60-62.
    20. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:147-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.