IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i4p1197-1204.html
   My bibliography  Save this article

Strategies for optimizing the opening of the outlet air circuit's nozzle to improve the efficiency of the PEMFC generator

Author

Listed:
  • Tirnovan, R.
  • Giurgea, S.
  • Miraoui, A.

Abstract

The aim of this study is the optimal dimensioning of the air circuit's outlet nozzle in relation with the load duration curve, for a given PEMFC generator, in order to maximize the PEMFC efficiency and to increase the net outlet power. The steady state PEMFC operation has been taken into account. The model of the PEMFC system used in the work is based on a moving least squares technique. A centrifugal compressor has been taken into account, and the operating line of the compressor has been evaluated for an optimal fixed opening of the outlet nozzle. A multi-level optimization procedure has been implemented to solve the optimization problem. The developed algorithm is useful to design an optimum air subsystem, reducing the number of the control variables and the consequences of the dynamic behavior of a controlled electric adjustable valve on the PEMFC performance. The results of the work can contribute to the improvement of the PEMFC generator reliability and of its cost/performance ratio.

Suggested Citation

  • Tirnovan, R. & Giurgea, S. & Miraoui, A., 2011. "Strategies for optimizing the opening of the outlet air circuit's nozzle to improve the efficiency of the PEMFC generator," Applied Energy, Elsevier, vol. 88(4), pages 1197-1204, April.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1197-1204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00404-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marsala, Giuseppe & Pucci, Marcello & Vitale, Gianpaolo & Cirrincione, Maurizio & Miraoui, Abdellatif, 2009. "A prototype of a fuel cell PEM emulator based on a buck converter," Applied Energy, Elsevier, vol. 86(10), pages 2192-2203, October.
    2. Khan, M.J. & Iqbal, M.T., 2009. "Analysis of a small wind-hydrogen stand-alone hybrid energy system," Applied Energy, Elsevier, vol. 86(11), pages 2429-2442, November.
    3. Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
    4. Tirnovan, R. & Giurgea, S. & Miraoui, A. & Cirrincione, M., 2008. "Surrogate modelling of compressor characteristics for fuel-cell applications," Applied Energy, Elsevier, vol. 85(5), pages 394-403, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
    2. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    3. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    4. Li, Dazi & Yu, Yadi & Jin, Qibing & Gao, Zhiqiang, 2014. "Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 68(C), pages 210-217.
    5. Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
    6. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Wei-Mon & Wang, Xiao-Dong & Lee, Duu-Jong & Zhang, Xin-Xin & Guo, Yi-Fan & Su, Ay, 2011. "Experimental study of commercial size proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 88(1), pages 392-396, January.
    2. Bizon, N., 2010. "On tracking robustness in adaptive extremum seeking control of the fuel cell power plants," Applied Energy, Elsevier, vol. 87(10), pages 3115-3130, October.
    3. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    4. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    5. Audierne, Etienne & Elizondo, Jorge & Bergami, Leonardo & Ibarra, Humberto & Probst, Oliver, 2010. "Analysis of the furling behavior of small wind turbines," Applied Energy, Elsevier, vol. 87(7), pages 2278-2292, July.
    6. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    7. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    8. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    9. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    10. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    11. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    12. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    13. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    14. Ahmad Najjaran & Saleh Meibodi & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications," Energies, MDPI, vol. 16(1), pages 1-17, January.
    15. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    16. Nistor, Silviu & Dave, Saraansh & Fan, Zhong & Sooriyabandara, Mahesh, 2016. "Technical and economic analysis of hydrogen refuelling," Applied Energy, Elsevier, vol. 167(C), pages 211-220.
    17. Seo, Sang Hern & Lee, Chang Sik, 2010. "A study on the overall efficiency of direct methanol fuel cell by methanol crossover current," Applied Energy, Elsevier, vol. 87(8), pages 2597-2604, August.
    18. Kamel, Rashad M., 2014. "Employing two novel mechanical fault ride through controllers for keeping stability of fixed speed wind generation systems hosted by standalone micro-grid," Applied Energy, Elsevier, vol. 116(C), pages 398-408.
    19. Mikati, M. & Santos, M. & Armenta, C., 2013. "Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system," Renewable Energy, Elsevier, vol. 57(C), pages 587-593.
    20. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1197-1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.