IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9520-d1004335.html
   My bibliography  Save this article

A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications

Author

Listed:
  • Suprava Chakraborty

    (TIFAC-CORE, Vellore Institute of Technology, Vellore 632014, India)

  • Devaraj Elangovan

    (TIFAC-CORE, Vellore Institute of Technology, Vellore 632014, India)

  • Karthikeyan Palaniswamy

    (Department of Automobile Engineering, PSG College of Technology, Coimbatore 641004, India)

  • Ashley Fly

    (Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Dineshkumar Ravi

    (Department of Automotive Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Denis Ashok Sathia Seelan

    (Department of Automotive Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Thundil Karuppa Raj Rajagopal

    (Department of Automotive Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

Abstract

Climate change and the major threat it poses to the environment and human lives is the major challenge the world faces today. To overcome this challenge, it is recommended that future automobiles have zero carbon exhaust emissions. Even though battery electric vehicles reduce carbon emissions relative to combustion engines, a carbon footprint still remains in the overall ecosystem unless the battery is powered by renewable energy sources. The proton exchange membrane fuel cell (PEMFC) is an alternate source for automotive mobility which, similar to battery electric vehicles, has zero carbon emissions from its exhaust pipe. Moreover, the typical system level efficiency of a PEMFC is higher than an equivalent internal combustion powertrain. This review article covers the background history, working principles, challenges and applications of PEMFCs for automotive transportation and power generation in industries. Since the performance of a PEMFC is greatly influenced by the design of the anode and cathode flow channels, an in-depth review has been carried out on different types of flow channel designs. This review reveals the importance of flow channel design with respect to uniform gas (reactant) distribution, membrane proton conductivity, water flooding and thermal management. An exhaustive study has been carried out on different types of flow channels, such as parallel, serpentine, interdigitated and bio-inspired, with respect to their performance and applications.

Suggested Citation

  • Suprava Chakraborty & Devaraj Elangovan & Karthikeyan Palaniswamy & Ashley Fly & Dineshkumar Ravi & Denis Ashok Sathia Seelan & Thundil Karuppa Raj Rajagopal, 2022. "A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9520-:d:1004335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. khazaee, I. & Sabadbafan, H., 2016. "Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 101(C), pages 252-265.
    2. Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
    3. Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
    4. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    6. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    7. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    8. Lim, B.H. & Majlan, E.H. & Daud, W.R.W. & Rosli, M.I. & Husaini, T., 2019. "Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell," Energy, Elsevier, vol. 169(C), pages 338-343.
    9. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
    10. Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
    11. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    12. Karvelas, E.G. & Koubogiannis, D.G. & Hatziapostolou, A. & Sarris, I.E., 2016. "The effect of anode bed geometry on the hydraulic behaviour of PEM fuel cells," Renewable Energy, Elsevier, vol. 93(C), pages 269-279.
    13. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    14. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    15. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Han & Weilin Zhuge & Jie Peng & Yuping Qian & Yangjun Zhang, 2023. "Numerical Investigation on Internal Structures of Ultra-Thin Heat Pipes for PEM Fuel Cells Cooling," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    2. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    3. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    4. Mohammadi-Ahmar, Akbar & Solati, Ali & Osanloo, Behzad & Hatami, Mohammad, 2017. "Effect of number and arrangement of separator electrode assembly (SEA) on the performance of square tubular PEM fuel cells," Energy, Elsevier, vol. 137(C), pages 302-313.
    5. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Cai, Yonghua & Fang, Zhou & Chen, Ben & Yang, Tianqi & Tu, Zhengkai, 2018. "Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design," Energy, Elsevier, vol. 161(C), pages 28-37.
    7. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    8. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    9. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    10. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    11. Hwang, Jenn-Jiang & Dlamini, Mangaliso Menzi & Weng, Fang-Bor & Chang, Tseng & Lin, Chih-Hong & Weng, Shih-Cheng, 2022. "Simulation of fine mesh implementation on the cathode for proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 244(PA).
    12. Sadiq T. Bunyan & Hayder A. Dhahad & Dhamyaa S. Khudhur & Talal Yusaf, 2023. "The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review," Sustainability, MDPI, vol. 15(13), pages 1-62, June.
    13. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    14. Feng, ShengSen & Huang, WenTao & Huang, Zhe & Jian, Qifei, 2022. "Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model," Applied Energy, Elsevier, vol. 317(C).
    15. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    16. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    17. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    18. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    19. Guodong Zhang & Zhen Guan & Da Li & Guoxiang Li & Shuzhan Bai & Ke Sun & Hao Cheng, 2023. "Optimization Design of a Parallel Flow Field for PEMFC with Bosses in Flow Channels," Energies, MDPI, vol. 16(14), pages 1-26, July.
    20. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9520-:d:1004335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.