IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008333.html
   My bibliography  Save this article

Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review

Author

Listed:
  • Xiong, Kangning
  • Wu, Wei
  • Wang, Shuangfeng
  • Zhang, Lin

Abstract

Bipolar plate is one of the most significant components of the proton exchange membrane fuel cell, which serves as the function of reactant gases supply, reaction products removal, current collection, structural support and so on. How to obtain superior bipolar plate, including uniform gas distribution, good water management, lower pressure drop, higher power density, lower cost, high mechanical strength, and easy fabricating, has become a technical challenge and future trend. This article aims to provide a comprehensive review of major findings of researches on modeling, flow field design, materials, and fabricating process of bipolar plate in recent year. The results demonstrate that the three-dimensional, steady-state, multi-phase, computational fluid dynamics model have become the most popular simulation method to assess the flow field design of bipolar plate. Also, the influencing factors, such as channel-land (rib) dimensions, baffles and flow channel shape, are considered as the significant elements that guide the flow field design and affect the performance of proton exchange membrane fuel cell. In addition, due to lower interfacial contact resistance, better corrosion resistance and lower cost, the coated stainless steel bipolar plates have shown greater advantages and potentialities in comparison to other bipolar plates. Four common fabricating methods are proposed to solve the metal plate processing problem. Finally, this review is expected to provide the guidance for the future development of bipolar plates.

Suggested Citation

  • Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008333
    DOI: 10.1016/j.apenergy.2021.117443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    4. Sun, Hong & Xie, Chen & Chen, Hao & Almheiri, Saif, 2015. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane," Applied Energy, Elsevier, vol. 160(C), pages 937-944.
    5. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    6. Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
    7. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    8. Perng, Shiang-Wuu & Wu, Horng-Wen & Chen, Yi-Bin & Zeng, Yi-Kai, 2019. "Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels," Applied Energy, Elsevier, vol. 255(C).
    9. Jin Hyun Kim & Woo Tae Kim, 2018. "Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections," Energies, MDPI, vol. 11(6), pages 1-18, May.
    10. Cai, Yonghua & Fang, Zhou & Chen, Ben & Yang, Tianqi & Tu, Zhengkai, 2018. "Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design," Energy, Elsevier, vol. 161(C), pages 28-37.
    11. Damian-Ascencio, Cesar E. & SaldaƱa-Robles, Adriana & Hernandez-Guerrero, Abel & Cano-Andrade, Sergio, 2017. "Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis," Energy, Elsevier, vol. 133(C), pages 306-316.
    12. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    13. Havaej, P., 2019. "A numerical investigation of the performance of Polymer Electrolyte Membrane fuel cell with the converging-diverging flow field using two-phase flow modeling," Energy, Elsevier, vol. 182(C), pages 656-672.
    14. Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
    15. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    16. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    17. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    19. Cai, Genchun & Liang, Yunmin & Liu, Zhichun & Liu, Wei, 2020. "Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm," Energy, Elsevier, vol. 192(C).
    20. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    2. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    3. Zhang, Jian & Huang, Pengyi & Ding, Honghui & Xin, Dongqun & Sun, Shufeng, 2023. "Investigation of the three-dimensional flow field for proton exchange membrane fuel cell with additive manufactured stainless steel bipolar plates: Numerical simulation and experiments," Energy, Elsevier, vol. 269(C).
    4. Yan, Wei-Mon & Lin, Jian-Cheng & Chen, Chen-Yu & Amani, Mohammad, 2023. "Performance evaluation of TiN/Ti coatings on the aluminum alloy bipolar plates for PEM fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    5. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Ji-Seong Kim & Keon-Soo Kim & Do-Young Kim & Min Heo & Kap-Seung Choi, 2022. "Effect of Rotational Control for Accelerating Water Discharge on the Performance of a Circular Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(8), pages 1-14, April.
    7. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    8. Mao, Xiaoyu & Li, Yifan & Hu, Xiufeng & Tian, Runping & Yu, Wei, 2023. "Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability," Applied Energy, Elsevier, vol. 338(C).
    9. Chul Kyu Jin & Jae Hyun Kim & Bong-Seop Lee, 2022. "Powder Bed Fusion 3D Printing and Performance of Stainless-Steel Bipolar Plate with Rectangular Microchannels and Microribs," Energies, MDPI, vol. 15(22), pages 1-15, November.
    10. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    11. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    2. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    3. Zhang, Xian-Wen & Wang, Xue-Jian & Cheng, Xiao-Zhang & Jin, Lei & Zhu, Jian-Wei & Zhou, Tao-Tao, 2020. "Numerical analysis of global and local performance variations of proton exchange membrane fuel cell with different bend layouts and flow directions," Energy, Elsevier, vol. 207(C).
    4. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    6. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    7. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    8. Hwang, Jenn-Jiang & Dlamini, Mangaliso Menzi & Weng, Fang-Bor & Chang, Tseng & Lin, Chih-Hong & Weng, Shih-Cheng, 2022. "Simulation of fine mesh implementation on the cathode for proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 244(PA).
    9. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    10. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    11. Suprava Chakraborty & Devaraj Elangovan & Karthikeyan Palaniswamy & Ashley Fly & Dineshkumar Ravi & Denis Ashok Sathia Seelan & Thundil Karuppa Raj Rajagopal, 2022. "A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    12. Sadiq T. Bunyan & Hayder A. Dhahad & Dhamyaa S. Khudhur & Talal Yusaf, 2023. "The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review," Sustainability, MDPI, vol. 15(13), pages 1-62, June.
    13. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    14. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    15. Cai, Yonghua & Fang, Zhou & Chen, Ben & Yang, Tianqi & Tu, Zhengkai, 2018. "Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design," Energy, Elsevier, vol. 161(C), pages 28-37.
    16. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    18. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    19. Guodong Zhang & Zhen Guan & Da Li & Guoxiang Li & Shuzhan Bai & Ke Sun & Hao Cheng, 2023. "Optimization Design of a Parallel Flow Field for PEMFC with Bosses in Flow Channels," Energies, MDPI, vol. 16(14), pages 1-26, July.
    20. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.