Two-phase flow in coupled gas diffusion layer and patterned wettability metal foam flow field in PEM fuel cells
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122419
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lin, Rui & Lan, Shunbo & Wu, Xiaoyan & Hao, Zhixian, 2024. "Effect of perforated cracks on liquid water in microporous layers by lattice Boltzmann method," Renewable Energy, Elsevier, vol. 222(C).
- Nguyen, Ba Hieu & Kim, Hyun Chul, 2024. "Novel design of a staggered-trap/block flow field for use in serpentine proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 236(C).
- Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
- Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
- Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
- Wu, Y. & Xu, L. & Zhou, S. & Yang, J. & Kockelmann, W. & Han, Y. & Li, Q. & Chen, W. & Coppens, M.-O. & Shearing, P.R. & Brett, D.J.L. & Jervis, R., 2024. "Water management and mass transport of a fractal metal foam flow-field based polymer electrolyte fuel cell using operando neutron imaging," Applied Energy, Elsevier, vol. 364(C).
- Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
- Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
- Li, Qifeng & Sun, Kai & Suo, Mengshan & Zeng, Zhen & Guan, Chengshuo & Liu, Huaiyu & Che, Zhizhao & Wang, Tianyou, 2024. "Water transport in PEMFC with metal foam flow fields: Visualization based on AI image recognition," Applied Energy, Elsevier, vol. 365(C).
- Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
- Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ho-Van, Phuc & Lim, Ocktaeck, 2025. "Natural TPMS porous architectures for flow-field patterns to improve mass transport in high current density operations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 381(C).
- Ghanbari, Sina & Ghasabehi, Mehrdad & Asadi, Mohammad Reza & Shams, Mehrzad, 2024. "An inquiry into transport phenomena and artificial intelligence-based optimization of a novel bio-inspired flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 376(PA).
- Tao, Xingxiao & Zeng, Zhen & Liu, Huaiyu & Suo, Mengshan & Li, Qifeng & Sun, Kai & Che, Zhizhao & Wang, Tianyou, 2025. "PEM fuel cell with non-uniform porous metal foam as cathode flow field," Applied Energy, Elsevier, vol. 380(C).
- Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
- Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
- Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
- Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
- Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
- Chen, Chaogang & Gao, Yuan, 2024. "Using multi-threshold non-local means joint distribution method to analysis the spatial distribution patterns of binder and fibers in gas diffusion layers of fuel cells," Applied Energy, Elsevier, vol. 358(C).
- Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
- Cai, Weiqiang & Zhou, Ruidong & Wang, Chenxia & Xie, Chao & Xiao, Liusheng & Zhang, Zhonggang & Yang, Chao & Yuan, Jinliang, 2025. "On characteristics and research development of coupled fuel cell stack performance and stress," Applied Energy, Elsevier, vol. 388(C).
- González-Morán, Laura & Suárez, Christian & Iranzo, Alfredo & Han, Lei & Rosa, Felipe, 2024. "A numerical study on heat transfer for serpentine-type cooling channels in a PEM fuel cell stack," Energy, Elsevier, vol. 307(C).
- Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
- Huang, Haozhong & Li, Xuan & Li, Songwei & Guo, Xiaoyu & Liu, Mingxin & Wang, Tongying & Lei, Han, 2023. "Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance," Energy, Elsevier, vol. 266(C).
- Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).
- Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Investigation of mass spatial distribution characteristics in proton exchange membrane fuel cells: Full-morphology simulation considering “mixed structure” gas distribution zones," Renewable Energy, Elsevier, vol. 243(C).
- Ahmed, Saad & Beauger, Christian & Zada, Amir & Iqbal, Waseem & Ahmed, Naveed & Anwar, Muhammad Tuoqeer & Hassan, Muhammad, 2025. "Recent advancements in designing high-performance proton exchange membrane fuel cells: A comprehensive review," Applied Energy, Elsevier, vol. 390(C).
- Xian, Lei & Li, Zhengyan & Wang, Qiuyu & Ding, Xirui & Kong, Jiazhen & Zuo, Bowen & Chen, Lei & Tao, Wen-Quan, 2025. "Optimization of ionomer distribution and oxygen transport in hydrogen fuel cell electrodes through carbon support surface functionalization: A molecular perspective study," Renewable Energy, Elsevier, vol. 245(C).
- Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
More about this item
Keywords
Proton exchange membrane fuel cell; Water management; Two-phase flow; Gas diffusion layer; Metal foam flow field;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000813. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.