IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125001983.html
   My bibliography  Save this article

Investigation of mass spatial distribution characteristics in proton exchange membrane fuel cells: Full-morphology simulation considering “mixed structure” gas distribution zones

Author

Listed:
  • Zhang, Yong
  • Zhang, Dongjian
  • Zhang, Yifang
  • Jiang, Xiaohui
  • Yang, Xi
  • Cao, Jing
  • Deng, Qihao
  • Chen, Ben
  • Liu, Qingshan
  • Chen, Yisong

Abstract

Improper structural design of the GDZ can result in non-uniform spatial distribution of mass, leading to localized gas starvation and hotspot formation. In response to these challenges, this study proposes a novel mixed structure (MS) GDZ, which combines the “bifurcation” and “dot matrix” (DM) structures, and compares its performance with that of empty chamber distribution zones (ECDZs) and various bifurcated distribution zones (BDZs). The simulation results reveal that as the fill volume within the GDZ increases, the variation in oxygen molar concentration (OMC) distribution within each channel also increases, however, overall output performance improves. Notably, the mixed structure distribution zone (MSDZ) exhibits a higher net output power density (with a decrease of only 0.37 %), while significantly reducing OMC distribution error and pressure drop. Moreover, a moderate increase in liquid flow velocity in the channels facilitates the removal of excess liquid, thereby reducing mass transfer resistance. In contrast, a higher pressure drop enhances gas transport, improving the electrochemical reaction rate by 5.02 %. The introduction of coolant (with an optimal flow rate of 5m∙s−1) increases the OMC distribution error but significantly boosts output performance. Nevertheless, the presence of localized high temperatures (with increased water vapor) dilutes oxygen, leading to localized oxygen starvation.

Suggested Citation

  • Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Investigation of mass spatial distribution characteristics in proton exchange membrane fuel cells: Full-morphology simulation considering “mixed structure” gas distribution zones," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001983
    DOI: 10.1016/j.renene.2025.122536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Peijian & Yang, Dehui & Zhao, Yang & Wang, Hongyu & Yang, Guogang & Li, Shian & Sun, Juncai, 2024. "Numerical investigation on designs and performances of multi-dimensional forced convection flow field design of proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 231(C).
    2. Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
    3. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    4. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    5. Li, Zheng & Wang, Yameng & Mu, Yongbiao & Wu, Buke & Jiang, Yuting & Zeng, Lin & Zhao, Tianshou, 2023. "Recent advances in the anode catalyst layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Zhang, Tianying & Wang, Kaichen & Xiao, Feng & Xu, Chao & Ye, Feng, 2024. "Measurement and simulation of voltage differences under ribs and channels and temperature variations within channels in PEMEC," Renewable Energy, Elsevier, vol. 223(C).
    7. Zhou, Yu & Meng, Kai & Liu, Wei & Chen, Ke & Chen, Wenshang & Zhang, Ning & Chen, Ben, 2024. "Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning," Renewable Energy, Elsevier, vol. 232(C).
    8. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
    9. Jiang, Ke & Zhao, Taotao & Fan, Wenxuan & Liu, Zhenning & Lu, Guolong, 2023. "Ramped step flow field to enhance mass transfer capacity and performance for PEMFC," Renewable Energy, Elsevier, vol. 219(P2).
    10. ChungHyuk Lee & Wilton J. M. Kort-Kamp & Haoran Yu & David A. Cullen & Brian M. Patterson & Tanvir Alam Arman & Siddharth Komini Babu & Rangachary Mukundan & Rod L. Borup & Jacob S. Spendelow, 2023. "Grooved electrodes for high-power-density fuel cells," Nature Energy, Nature, vol. 8(7), pages 685-694, July.
    11. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    12. Lu, Guolong & Liu, Mingxin & Su, Xunkang & Zheng, Tongxi & Luan, Yang & Fan, Wenxuan & Cui, Hao & Liu, Zhenning, 2024. "Study on counter-flow mass transfer characteristics and performance optimization of commercial large-scale proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 359(C).
    13. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    14. Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).
    15. Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).
    16. Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Fang, Haoyan & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Spatial distribution characteristics of various physical quantities in PEM fuel cells: Entire morphology investigation based on bifurcated gas distribution zones," Applied Energy, Elsevier, vol. 381(C).
    17. Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Fang, Haoyan & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Spatial distribution characteristics of various physical quantities in PEM fuel cells: Entire morphology investigation based on bifurcated gas distribution zones," Applied Energy, Elsevier, vol. 381(C).
    2. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    3. Ghanbari, Sina & Ghasabehi, Mehrdad & Asadi, Mohammad Reza & Shams, Mehrzad, 2024. "An inquiry into transport phenomena and artificial intelligence-based optimization of a novel bio-inspired flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 376(PA).
    4. Tao, Xingxiao & Zeng, Zhen & Liu, Huaiyu & Suo, Mengshan & Li, Qifeng & Sun, Kai & Che, Zhizhao & Wang, Tianyou, 2025. "PEM fuel cell with non-uniform porous metal foam as cathode flow field," Applied Energy, Elsevier, vol. 380(C).
    5. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
    6. Zhang, Zhuo & Quan, Hong-Bing & Cai, Sai-Jie & Li, Zheng-Dao & Tao, Wen-Quan, 2025. "Design strategies for mainstream flow channels in large-area PEMFC: From typical units to large areas," Applied Energy, Elsevier, vol. 388(C).
    7. Zhu, Xinning & Liu, Rongkang & Su, Liang & Wang, Xi & Chu, Xuyang & Ma, Yao & Wu, Linjing & Song, Guangji & Zhou, Wei, 2023. "Synergistic mass transfer and performance stability of a proton exchange membrane fuel cell with traveling wave flow channels," Energy, Elsevier, vol. 285(C).
    8. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    9. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    10. Zhang, Zehui & He, Ningxin & Huo, Weiwei & Xu, Xiaobin & Sun, Chao & Li, Jianwei, 2025. "Privacy preserving federated learning for proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    11. Cai, Yonghua & Liu, Xiaomu & Wei, Fan & Luo, Zixian & Chen, Ben, 2024. "Numerical and experimental study on mass transfer and performance of proton exchange membrane fuel cell with a gradient 3D flow field," Applied Energy, Elsevier, vol. 361(C).
    12. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    13. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    14. Lv, Xuecheng & Zhou, Zhifu & Wu, Wei-Tao & Wei, Lei & Gao, Linsong & Lyu, Jizu & Li, Yang & Yang, Yunjie & Li, Yubai & Song, Yongchen, 2025. "Two-phase flow in coupled gas diffusion layer and patterned wettability metal foam flow field in PEM fuel cells," Renewable Energy, Elsevier, vol. 242(C).
    15. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    16. Xie, Biao & Zhang, Hanyang & Huo, Wenming & Wang, Renfang & Zhu, Ying & Wu, Lizhen & Zhang, Guobin & Ni, Meng & Jiao, Kui, 2023. "Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism," Applied Energy, Elsevier, vol. 331(C).
    17. Zhao, Taotao & Fan, Wenxuan & Cui, Hao & Liu, Mingxin & Zheng, Tongxi & Luan, Yang & Su, Xunkang & Liu, Chaozong & Lu, Guolong & Liu, Zhenning, 2025. "3D hybrid-wettability fin channel with dual enhancement of drainage and mass transfer to improve PEMFC performance," Energy, Elsevier, vol. 315(C).
    18. Lu, Yirui & Yang, Daijun & Wu, Haoyu & Jia, Linhan & Chen, Jie & Ming, Pingwen & Pan, Xiangmin, 2024. "Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment," Renewable Energy, Elsevier, vol. 234(C).
    19. Zhang, Xiaoqing & Ma, Xiao & Zhang, Zhaohuan & Du, Haoyu & Wu, Zhixuan & Li, Zhe & Shuai, Shijin, 2025. "Review and analysis of thermal management for proton exchange membrane fuel cell hybrid power system," Renewable Energy, Elsevier, vol. 244(C).
    20. Zhang, Zhuo & Cai, Sai-jie & Li, Zheng-dao & Tao, Wen-Quan, 2024. "Electrical and thermal performance analysis of PEMFC with coolant flow field under steady-state condition," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.