IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v176y2023ics1364032123000382.html
   My bibliography  Save this article

Recent advances in the anode catalyst layer for proton exchange membrane fuel cells

Author

Listed:
  • Li, Zheng
  • Wang, Yameng
  • Mu, Yongbiao
  • Wu, Buke
  • Jiang, Yuting
  • Zeng, Lin
  • Zhao, Tianshou

Abstract

Generally, research on the catalyst layer for proton exchange membrane fuel cells (PEMFCs) focuses on the cathode side. However, the anode side should not be ignored because many problems of the anode side cause repercussions on the performance and durability of PEMFCs. Herein, advances in the anode catalyst layer in the past decade are reviewed, focusing on poisoning, cell reversal, and low platinum loading anode. This review considers the mechanism and effect of each adverse circumstance and summarizes the functional catalyst layers mitigation research, aiming to highlight the research gaps and make recommendations for future anode catalyst layer research of PEMFCs.

Suggested Citation

  • Li, Zheng & Wang, Yameng & Mu, Yongbiao & Wu, Buke & Jiang, Yuting & Zeng, Lin & Zhao, Tianshou, 2023. "Recent advances in the anode catalyst layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:rensus:v:176:y:2023:i:c:s1364032123000382
    DOI: 10.1016/j.rser.2023.113182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darowicki, K. & Gawel, L. & Mielniczek, M. & Zielinski, A. & Janicka, E. & Hunger, J. & Jorissen, L., 2020. "The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream," Applied Energy, Elsevier, vol. 279(C).
    2. Zhang, Lei & Kim, Jenny & Zhang, Jiujun & Nan, Feihong & Gauquelin, Nicolas & Botton, Gianluigi A. & He, Ping & Bashyam, Rajesh & Knights, Shanna, 2013. "Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction," Applied Energy, Elsevier, vol. 103(C), pages 507-513.
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    4. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    5. Gurong Shen & Jing Liu & Hao Bin Wu & Pengcheng Xu & Fang Liu & Chasen Tongsh & Kui Jiao & Jinlai Li & Meilin Liu & Mei Cai & John P. Lemmon & Grigorii Soloveichik & Hexing Li & Jian Zhu & Yunfeng Lu, 2020. "Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    2. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    4. Zhu, Xinning & Liu, Rongkang & Su, Liang & Wang, Xi & Chu, Xuyang & Ma, Yao & Wu, Linjing & Song, Guangji & Zhou, Wei, 2023. "Synergistic mass transfer and performance stability of a proton exchange membrane fuel cell with traveling wave flow channels," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    2. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    3. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    4. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    5. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    6. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    7. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    8. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    9. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    13. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    14. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    15. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    16. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    17. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.
    18. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    19. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:176:y:2023:i:c:s1364032123000382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.