IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025686.html
   My bibliography  Save this article

Atomic-scale insights into the structure-activity relationship between water transport and water phase structure in proton exchange membranes with deposited Pt particles

Author

Listed:
  • Xian, Lei
  • Li, Zhengyan
  • Wang, Qiuyu
  • Lv, Shuangyu
  • Li, Shuchang
  • Yu, Yulong
  • Chen, Lei
  • Tao, Wen-Quan

Abstract

Commercial development of proton exchange membrane fuel cells is hindered by membrane stability and durability. Platinum particles in the electrodes can deposit in the proton exchange membrane after long-term operation, reducing its performance. Here, Pt/Nafion membranes with different water contents and platinum particle sizes were built, and molecular dynamics simulations were conducted to assess the impact of deposited Pt nanoparticles on water transport capacity within the membrane and to capture nanoscale changes of water structure. The findings show that the Pt particles adsorb water molecules and form a partially coated water film on the surface, thereby reducing the water transport capacity, especially at low hydration levels. The absorbed water molecules exist in two forms, surface-adsorbed and indirectly-adsorbed water molecules. The former is the dominant factor determining the degree of inhibition of water diffusion in the membrane by Pt particles, whereas the latter appears in large numbers outside 3 nm particles, leading to a slightly weaker ability of 3 nm particles to inhibit water molecule diffusion compared to 2 nm particles. This study offers a basic comprehension of water transport properties in proton exchange membranes with platinum particles and guides the development of membranes with enhanced mass transfer capability.

Suggested Citation

  • Xian, Lei & Li, Zhengyan & Wang, Qiuyu & Lv, Shuangyu & Li, Shuchang & Yu, Yulong & Chen, Lei & Tao, Wen-Quan, 2025. "Atomic-scale insights into the structure-activity relationship between water transport and water phase structure in proton exchange membranes with deposited Pt particles," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025686
    DOI: 10.1016/j.apenergy.2024.125184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).
    2. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    3. Chen, Jun-Hong & He, Pu & Cai, Sai-Jie & He, Ze-Hong & Zhu, Hao-Ning & Yu, Zi-Yan & Yang, Lu-Zheng & Tao, Wen-Quan, 2024. "Modeling and temperature control of a water-cooled PEMFC system using intelligent algorithms," Applied Energy, Elsevier, vol. 372(C).
    4. Wei Wang & Shan Chen & Xuelong Liao & Rong Huang & Fengmei Wang & Jialei Chen & Yaxin Wang & Fei Wang & Huan Wang, 2023. "Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Adu Offei-Danso & Uriel N. Morzan & Alex Rodriguez & Ali Hassanali & Asja Jelic, 2023. "The collective burst mechanism of angular jumps in liquid water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
    7. Chen, Lei & Xiang, Xing & Tao, Wenquan, 2020. "Study on thermal conductivity of proton exchange membrane containing platinum particle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
    9. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    10. Huang, Junbo & Balcombe, Paul, 2024. "How to minimise the cost of green hydrogen with hybrid supply: A regional case study in China," Applied Energy, Elsevier, vol. 355(C).
    11. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    12. Garcia-Sanchez, D. & Morawietz, T. & da Rocha, P. Gama & Hiesgen, R. & Gazdzicki, P. & Friedrich, K.A., 2020. "Local impact of load cycling on degradation in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    2. Xiaoqing Cao & Hongyu Guo & Ying Han & Menggang Li & Changshuai Shang & Rui Zhao & Qizheng Huang & Ming Li & Qinghua Zhang & Fan Lv & Hao Tan & Zhengyi Qian & Mingchuan Luo & Shaojun Guo, 2025. "Sandwiching intermetallic Pt3Fe and ionomer with porous N-doped carbon layers for oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    4. Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
    5. Lu, Yirui & Yang, Daijun & Wu, Haoyu & Jia, Linhan & Chen, Jie & Ming, Pingwen & Pan, Xiangmin, 2024. "Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment," Renewable Energy, Elsevier, vol. 234(C).
    6. Xia, Zhifeng & Chen, Huicui & Li, Weihong & Zhang, Ruirui & Xu, Yiming & Zhang, Tong & Pei, Pucheng, 2024. "Characterization and analysis of current distribution for oxygen starvation diagnosis: A research based on segmented PEMFC technology," Renewable Energy, Elsevier, vol. 237(PC).
    7. Liu, Zhao & Chen, Huicui & Zhang, Tong, 2022. "Review on system mitigation strategies for start-stop degradation of automotive proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 327(C).
    8. Qihao Li & Christopher J. Pollock & Joesene Soto & Andrés Molina Villarino & Zixiao Shi & Mihail R. Krumov & David A. Muller & Héctor D. Abruña, 2025. "Operando X-ray absorption spectroscopic investigation of electrocatalysts state in anion exchange membrane fuel cells," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    9. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    10. Xun, Dengye & Hao, Han & Sun, Xin & Geng, Jingxuan & Liu, Zongwei & Zhao, Fuquan, 2022. "Modeling the evolvement of regional fuel cell vehicle supply chain: Implications for enhancing supply chain sustainability," International Journal of Production Economics, Elsevier, vol. 249(C).
    11. Lin, P.Z. & Sun, J. & He, C.X. & Wu, M.C. & Zhao, T.S., 2024. "Modeling proton exchange membrane fuel cells with platinum-group-metal-free catalysts," Applied Energy, Elsevier, vol. 360(C).
    12. Luo, Zongkai & Chen, Ke & Zou, Guofu & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Wenshang & Chen, Ben, 2024. "Dynamic response characteristics and water-gas-heat synergistic transport mechanism of proton exchange membrane fuel cell during transient loading," Energy, Elsevier, vol. 302(C).
    13. Cai, Sai-Jie & Wang, Mu-Chen & Chen, Jun-Hong & Zhang, Zhuo & He, Pu & Tao, Wen-Quan, 2025. "An efficient neural-network-based image processing method for water quantification in a transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 382(C).
    14. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    15. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    16. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    17. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    18. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    19. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Wei Shen & Hongtao Su & Jianhua Gao & Lei Fan & Gang Zhang & Su Zhou, 2025. "A Multi-Objective Temperature Control Method for a Multi-Stack Fuel Cell System with Different Stacks Based on Model Predictive Control," Energies, MDPI, vol. 18(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.