IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics030626192400401x.html
   My bibliography  Save this article

Optimization of fast cold start strategy for PEM fuel cell stack

Author

Listed:
  • Tao, Jianjian
  • Zhang, Yihan
  • Wei, Xuezhe
  • Jiang, Shangfeng
  • Dai, Haifeng

Abstract

The low-temperature cold start has become one of the leading technical bottlenecks limiting the large-scale commercial application of proton exchange membrane(PEM) fuel cells. This paper establishes the 1-D numerical model of the fuel cell stack to study the reactant gas, charge transfer, heat transfer, and water phase transition process. Then the critical parameters in the numerical model of the fuel cell stack are identified based on the cold start experiment data. The identification results show that the cold start model is consistent with the experimental results, and the model's output voltage and average temperature errors are under the acceptable range. Based on the numerical model, with the cold start time as the optimization objective and load current and initial membrane water content as the optimization variable, the cold start strategy is optimized under different ambient temperatures. The results show that the optimized current loading strategy can reduce the cold start time of the fuel cell stack and achieve a fast, successful cold start for −20 °C and − 25 °C conditions. The cold start time of the optimized cold start strategy is reduced by 42.2% compared with the strategy of step stair current under −20 °C. For the lower ambient temperature,-30 °C or below, to realize the successful cold start of fuel cell stacks, two aspects are needed: the redesign of the bipolar plate and endplate structure and the optimization of the cold start strategy.

Suggested Citation

  • Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s030626192400401x
    DOI: 10.1016/j.apenergy.2024.123018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400401X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s030626192400401x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.