IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003776.html
   My bibliography  Save this article

Direct ammonia fuel cells: A review

Author

Listed:
  • Ho, Chia-Yun
  • Chu, Shen-Wei
  • Huang, Kuan-Chen
  • Cheng, Shan-Yun
  • Li, Cheng-Yi
  • Chang, Han-Jung
  • Wan, Terng-Jou

Abstract

In response to the rising greenhouse gas emissions, countries worldwide are actively working towards achieving net-zero carbon emissions by 2050, which is driving extensive research into green energy. Among the various options, ammonia shows significant potential due to its safety in storage and transportation, as well as its high energy density. This article reviews the role of electrocatalysts in direct ammonia fuel cells, focusing on enhancing efficiency by reducing energy losses, improving the ionic conductivity of the electrolyte membrane, and increasing stability. The aim is to provide a roadmap for future researchers in this field. To conduct this study, a bibliometric analysis was performed to examine direct ammonia fuel cells. This involved retrieving 1792 articles through artificial intelligence-driven methods, of which 84 were directly relevant. NVivo tools—such as word clouds and matrices—were utilized to identify key terms like "ammonia fuel cell," "membrane type," and "noble metal electrocatalyst." The findings indicate that bimetallic catalysts are the most effective for electrocatalysts, while anion exchange membranes are identified as the optimal membrane type. This review highlights current research on direct ammonia fuel cells. , with an emphasis on electrocatalysts and electrolyte membranes, guiding future studies toward the development of efficient and sustainable low-temperature fuel cells.

Suggested Citation

  • Ho, Chia-Yun & Chu, Shen-Wei & Huang, Kuan-Chen & Cheng, Shan-Yun & Li, Cheng-Yi & Chang, Han-Jung & Wan, Terng-Jou, 2025. "Direct ammonia fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003776
    DOI: 10.1016/j.rser.2025.115704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. Ali Ülkü & James H. Bookbinder & Nam Yi Yun, 2024. "Leveraging Industry 4.0 Technologies for Sustainable Humanitarian Supply Chains: Evidence from the Extant Literature," Sustainability, MDPI, vol. 16(3), pages 1-26, February.
    2. Akgun, Ibrahim & Dincer, Ibrahim, 2024. "Development of a smart powering system with ammonia fuel cells and internal combustion engine for submarines," Energy, Elsevier, vol. 294(C).
    3. Pan, Zhefei & Liu, Yun & Tahir, Abdullah & Christopher Esan, Oladapo & Zhu, Jie & Chen, Rong & An, Liang, 2022. "A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage," Applied Energy, Elsevier, vol. 322(C).
    4. Marcela Marçal Alves Pinto Mick & João Luiz Kovaleski & Daiane Maria de Genaro Chiroli, 2024. "Sustainable Digital Transformation Roadmaps for SMEs: A Systematic Literature Review," Sustainability, MDPI, vol. 16(19), pages 1-24, October.
    5. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    6. Tang, Tao & Li, Baixue & Lu, Meng & Feng, Yin & Wang, Jinwei, 2025. "Synergistic geothermal energy and ammonia fuel cell utilization towards sustainable power, cooling, and freshwater production; An exergoeconomic, exergoenvironmental, and technoeconomic analysis," Renewable Energy, Elsevier, vol. 241(C).
    7. Sánchez, Antonio & Blanco, Elena C. & Martín, Mariano, 2024. "Comparative assessment of methanol and ammonia: Green fuels vs. hydrogen carriers in fuel cell power generation," Applied Energy, Elsevier, vol. 374(C).
    8. Wolf, P. & Klingler, M. & Schmidt, M. & Kurze, M., 2023. "Ammonia-fed fuel cells for a locally CO2-free energy supply in the telecommunications industry - A comparative techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Gaffar Hafiz Sagala & Dóra Őri, 2024. "Toward SMEs digital transformation success: a systematic literature review," Information Systems and e-Business Management, Springer, vol. 22(4), pages 667-719, December.
    10. Li, Zheng & Wang, Yameng & Mu, Yongbiao & Wu, Buke & Jiang, Yuting & Zeng, Lin & Zhao, Tianshou, 2023. "Recent advances in the anode catalyst layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Sun, Shangcong & Jiang, Qiuqiao & Zhao, Dongyue & Cao, Tiantian & Sha, Hao & Zhang, Chuankun & Song, Haitao & Da, Zhijian, 2022. "Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Xiong Peng & Devashish Kulkarni & Ying Huang & Travis J. Omasta & Benjamin Ng & Yiwei Zheng & Lianqin Wang & Jacob M. LaManna & Daniel S. Hussey & John R. Varcoe & Iryna V. Zenyuk & William E. Mustain, 2020. "Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahzad, Asim & Jiang, Haihui Joy & Aguey-Zinsou, Kondo-Francois, 2025. "Unitized regenerative fuel cells: Fundamental challenges and advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    2. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    3. Indriadi, Keshia Saradima & Du, Yankun & He, Qian & Yan, Ning, 2025. "Critical downstream catalytic processes for an NH3 economy," Applied Energy, Elsevier, vol. 393(C).
    4. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    5. Mucci, Simone & Stumm, Marc-Daniel & Rix, Michael J. & Mitsos, Alexander, 2025. "Model-based evaluation of ammonia energy storage concepts at high technological readiness level," Applied Energy, Elsevier, vol. 377(PB).
    6. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    7. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jinglin Li & Bowen Sheng & Yiqing Chen & Jiajia Yang & Ping Wang & Yixin Li & Tianqi Yu & Hu Pan & Liang Qiu & Ying Li & Jun Song & Lei Zhu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2024. "Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    10. Wen, Du & Wei, Xinyi & Bruneau, Antonin & Maroonian, Aris & Maréchal, François & Van herle, Jan, 2025. "Techno-economic analysis of ammonia to hydrogen and power pathways considering the emerging hydrogen purification and fuel cell technologies," Applied Energy, Elsevier, vol. 390(C).
    11. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    12. Deng, Zhihua & Wang, Haijiang & Liu, Hao & Chen, Qihong & Zhang, Jiashun, 2024. "Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer," Renewable Energy, Elsevier, vol. 234(C).
    13. Chen, Xin & Zhang, Ying & Xu, Sheng & Dong, Fei, 2023. "Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 333(C).
    14. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    15. Yijian He & Han Zhang, 2024. "Analysis of Characteristics on a Compressed Air Power System Generating Supercavitation Drag Reduction for Underwater Vehicles," Energies, MDPI, vol. 17(7), pages 1-19, April.
    16. Realpe, Natalia & Lezcano, Gontzal & Kulkarni, Shekhar R. & Sayas, Salvador & Morlanes, Natalia & Rakib, Mohammad & Aldilaijan, Ragad & Solami, Bandar & Gascon, Jorge & Castaño, Pedro, 2024. "The technological prospects of repurposing methane steam reformers into ammonia crackers for decarbonized H2 production," Applied Energy, Elsevier, vol. 376(PB).
    17. Govindan, Kannan, 2025. "Analyzing the dynamic capabilities of emerging technologies for industrial emergency situations," International Journal of Production Economics, Elsevier, vol. 281(C).
    18. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Jianuo Chen & Xuekun Lu & Lingtao Wang & Wenjia Du & Hengyi Guo & Max Rimmer & Heng Zhai & Yuhan Liu & Paul R. Shearing & Sarah J. Haigh & Stuart M. Holmes & Thomas S. Miller, 2024. "Laser scribed proton exchange membranes for enhanced fuel cell performance and stability," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.