Author
Listed:
- Wen, Du
- Wei, Xinyi
- Bruneau, Antonin
- Maroonian, Aris
- Maréchal, François
- Van herle, Jan
Abstract
Ammonia serves as a promising hydrogen carrier and energy storage medium due to its high hydrogen content, ease of transport, and well-established production infrastructure. This study presents a comprehensive techno-economic analysis of ammonia-to‑hydrogen (A2H) and ammonia-to-power (A2P) pathways, comparing various process configurations for hydrogen production and power generation. High-temperature ammonia crackers (600 °C) achieve a maximum energy efficiency of 87.55 % and a maximum exergy efficiency of 86.09 %, outperforming lower-temperature crackers (450 °C), which have energy efficiencies ranging from 82.16 % to 86.75 %. Among hydrogen separation technologies, temperature swing adsorption (TSA) incurs the lowest efficiency penalty but at the highest cost, while pressure swing adsorption (PSA) is more energy-intensive but has the lowest levelized cost of hydrogen (LCOH) at 2.81 USD/kg. In the A2P pathway, the integrated system of the high-temperature cracker and solid oxide fuel cell (SOFC) achieves the highest efficiency of 69.55 % and the lowest levelized cost of electricity (LCOE) at 0.145 USD/kWh, underscoring the crucial role of system efficiency in determining LCOE. Conversely, directly combusting hydrogen in a steam Rankine cycle (SRC) results in the lowest efficiency of 33.2 % and the highest LCOE of 0.715 USD/kWh, making it the least viable option. Furthermore, integrating ammonia with existing energy infrastructures creates new opportunities for hydrogen production and power generation. The results highlight ammonia's potential as a cost-effective hydrogen carrier, particularly in renewable-rich regions for large-scale ammonia synthesis and export to high energy cost markets. This study offers insights into optimal strategies for deploying ammonia-based energy solutions, informing future technological developments and policy frameworks for a hydrogen-driven future economy.
Suggested Citation
Wen, Du & Wei, Xinyi & Bruneau, Antonin & Maroonian, Aris & Maréchal, François & Van herle, Jan, 2025.
"Techno-economic analysis of ammonia to hydrogen and power pathways considering the emerging hydrogen purification and fuel cell technologies,"
Applied Energy, Elsevier, vol. 390(C).
Handle:
RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006014
DOI: 10.1016/j.apenergy.2025.125871
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006014. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.