IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p929-d1340050.html
   My bibliography  Save this article

Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective

Author

Listed:
  • Georgi Todorov

    (Faculty of Industrial Technology, Technical University of Sofia, 1756 Sofia, Bulgaria)

  • Ivan Kralov

    (Faculty of Industrial Technology, Technical University of Sofia, 1756 Sofia, Bulgaria)

  • Ivailo Koprev

    (University of Mining and Geology “St. Ivan Rilski”, 1700 Sofia, Bulgaria)

  • Hristo Vasilev

    (Faculty of Industrial Technology, Technical University of Sofia, 1756 Sofia, Bulgaria)

  • Iliyana Naydenova

    (Faculty of Industrial Technology, Technical University of Sofia, 1756 Sofia, Bulgaria)

Abstract

The sustainable energy transition to a low-carbon and climate-neutral economy by 2050 requires a consistent increase in the share of renewable energy sources (RESs) at the expense of the share of fossil fuels. The coal power plants in the Republic of Bulgaria have provided about one third of the annually produced electric power for decades, utilizing mainly locally available sources of lignite. The present work aimed to review the progress of the energy transition, its rejection and acceptance at the national and international scene alongside the available research for cleaner coal combustion in Bulgaria, as well as discuss a Bulgarian perspective for coal share reduction options for power generation during the energy transition. A comprehensive review was carried out, based on freely accessible data such as research and open media articles, officially published field reports, legislative and strategic acts as well as validated statistical data. Three groups of critical gaps (socioeconomic, sociotechnical and cultural and political) were indicated, claimed to be capable of guiding the just transition. Key factors influencing the process dynamics were identified and categorized in the context of the critical gaps. The peculiar policy criteria for the carbon-intensive regions are as follows: the dominant energy carriers, existing infrastructure, involved actors and choice of strategy. The observations allowed us to conclude that in addition to the efforts achieved and ambitious political will, the identification of reliable technological and socioeconomic measures is needed more than ever (accompanied by interdisciplinary research involving the technical, social and environmental and policy factors), while renewables still have long way to go towards complete substitution of the fossil fuels for power generation, transport, and manufacturing. Limited literature was found for reducing the share of coal from currently operating Bulgarian coal-fired power plants (CFPPs). Herein, short- and/or medium-term measures for carbon emission reduction were discussed, capable of promoting the limited operation of existing CFPPs, thus paving the road towards a sustainable, long-term transition. These measures concerned the typically used power units in the largest CFPPs located at the Maritsa Iztok Mining Complex (MIMC). Analyses of the biomass production, supply and cost for the same type of power units were proposed, considering the use of 100% biomass. Estimated costs, unit efficiencies and power generation were discussed along with the evaluations about the land use, ensuring a given annual productivity of wood chips from fast growing plants, e.g., Paulownia.

Suggested Citation

  • Georgi Todorov & Ivan Kralov & Ivailo Koprev & Hristo Vasilev & Iliyana Naydenova, 2024. "Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective," Energies, MDPI, vol. 17(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:929-:d:1340050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "Evaluation of power investment decisions under uncertain carbon policy: A case study for converting coal fired steam turbine to combined cycle gas turbine plants in Australia," Applied Energy, Elsevier, vol. 118(C), pages 271-279.
    2. Tan, Hao & Thurbon, Elizabeth & Kim, Sung-Young & Mathews, John A., 2021. "Overcoming incumbent resistance to the clean energy shift: How local governments act as change agents in coal power station closures in China," Energy Policy, Elsevier, vol. 149(C).
    3. Steckel, Jan C. & Jakob, Michael, 2021. "The political economy of coal: Lessons learnt from 15 country case studies," World Development Perspectives, Elsevier, vol. 24(C).
    4. Carapellucci, Roberto & Giordano, Lorena, 2015. "Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines," Applied Energy, Elsevier, vol. 156(C), pages 86-98.
    5. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    6. Ganev, Peter, 2009. "Bulgarian electricity market restructuring," Utilities Policy, Elsevier, vol. 17(1), pages 65-75, March.
    7. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Sánchez, Antonio & Castellano, Elena & Martín, Mariano & Vega, Pastora, 2021. "Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective," Applied Energy, Elsevier, vol. 293(C).
    9. Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
    10. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    11. Román-Collado, Rocío & Economidou, Marina, 2021. "The role of energy efficiency in assessing the progress towards the EU energy efficiency targets of 2020: Evidence from the European productive sectors," Energy Policy, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charikleia Karakosta & Alice Corovessi & Isaak Vryzidis, 2025. "Unlocking Sustainable Financing Practices for Energy Efficiency Projects: A Multi-Country Analysis," Energies, MDPI, vol. 18(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mucci, Simone & Stumm, Marc-Daniel & Rix, Michael J. & Mitsos, Alexander, 2025. "Model-based evaluation of ammonia energy storage concepts at high technological readiness level," Applied Energy, Elsevier, vol. 377(PB).
    2. Do, Thang Nam & Burke, Paul J., 2023. "Phasing out coal power in a developing country context: Insights from Vietnam," Energy Policy, Elsevier, vol. 176(C).
    3. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    4. Wen, Du & Wei, Xinyi & Bruneau, Antonin & Maroonian, Aris & Maréchal, François & Van herle, Jan, 2025. "Techno-economic analysis of ammonia to hydrogen and power pathways considering the emerging hydrogen purification and fuel cell technologies," Applied Energy, Elsevier, vol. 390(C).
    5. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    6. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    7. Javier Barba & Miguel Cañas-Carretón & Miguel Carrión & Gabriel R. Hernández-Labrado & Carlos Merino & José Ignacio Muñoz & Rafael Zárate-Miñano, 2025. "Integrating Hydrogen into Power Systems: A Comprehensive Review," Sustainability, MDPI, vol. 17(13), pages 1-64, July.
    8. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    10. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    12. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    13. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    14. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    15. Román-Collado, Rocío & Casado Ruíz, Virginia, 2024. "Key effects contributing to changes in energy imports in the EU-27 between 2000 and 2020: A decomposition analysis based on the Sankey diagram," Energy Economics, Elsevier, vol. 140(C).
    16. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    17. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Ryszard Bartnik & Waldemar Skomudek & Zbigniew Buryn & Anna Hnydiuk-Stefan & Aleksandra Otawa, 2018. "Methodology and Continuous Time Mathematical Model to Select Optimum Power of Gas Turbine Set for Dual-Fuel Gas-Steam Combined Heat and Power Plant in Parallel System," Energies, MDPI, vol. 11(7), pages 1-22, July.
    19. Pivetta, Davide & Tafone, Alessio & Mazzoni, Stefano & Romagnoli, Alessandro & Taccani, Rodolfo, 2024. "A multi-objective planning tool for the optimal supply of green hydrogen for an industrial port area decarbonization," Renewable Energy, Elsevier, vol. 232(C).
    20. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:929-:d:1340050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.