IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004854.html
   My bibliography  Save this article

Bridging the gap between prediction and real-time diagnosis of water failures in proton exchange membrane fuel cell stacks via gas distribution characterization

Author

Listed:
  • Ren, Peng
  • Fu, Xi
  • Pei, Pucheng
  • Li, Yuehua
  • Zhu, Zijing
  • Wang, He
  • Song, Xin
  • Wang, Zhezheng

Abstract

Water failures and consequent relatively low voltages of certain cells in high-power fuel cell stacks severely threaten the operating stability and durability, which passively depend on real-time diagnosis with the stack regarded as a black box due to the poor knowledge in the triggers and the interactions among cells. This paper identifies a strong correlation between water-failure risks and gas maldistribution among cells, enabling risk assessment, failure prediction, and pre-operation optimization. By means of in-situ characterization, the condition parameters of gas pressure and operating temperature are proven to have minimal impact on gas distribution among cells, while an increase in inlet gas humidity induces gas redistribution attributed to uneven water accumulation. The synchronously-identified average mass transfer coefficients of the cathode change in a predictable manner with varying condition parameters. Meanwhile, under near-flooding conditions, cell voltage fluctuations, fuzzy indicators of cathode flooding, increase evidently as the distributed gas flow rate decreases. In an elaborate step-current experiment, gas flow interactions between adjacent cells are observed during water accumulation and flooding interior certain cells. Thus, the complex flooding behavior of specific cells in large stacks can be predicted through gas distribution characterization. This theory is applied in practice to a 100-cell stack, where 8 high-risk cells are accurately identified.

Suggested Citation

  • Ren, Peng & Fu, Xi & Pei, Pucheng & Li, Yuehua & Zhu, Zijing & Wang, He & Song, Xin & Wang, Zhezheng, 2025. "Bridging the gap between prediction and real-time diagnosis of water failures in proton exchange membrane fuel cell stacks via gas distribution characterization," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004854
    DOI: 10.1016/j.apenergy.2025.125755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
    2. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    3. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    4. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    5. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    6. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    7. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    8. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    9. Ren, Peng & Meng, Yining & Pei, Pucheng & Fu, Xi & Chen, Dongfang & Li, Yuehua & Zhu, Zijing & Zhang, Lu & Wang, Mingkai, 2023. "Rapid synchronous state-of-health diagnosis of membrane electrode assemblies in fuel cell stacks," Applied Energy, Elsevier, vol. 330(PA).
    10. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    3. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Ren, Peng & Wang, He, 2024. "Novel methods for fault diagnosis and enhancing CO tolerance in PEM fuel cells fueled with impure hydrogen," Applied Energy, Elsevier, vol. 375(C).
    4. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    5. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    6. Lu Zhang & Yongfeng Liu & Guijun Bi & Xintong Liu & Long Wang & Yuan Wan & Hua Sun, 2022. "Modeling and Experimental Investigation of the Anode Inlet Relative Humidity Effect on a PEM Fuel Cell," Energies, MDPI, vol. 15(13), pages 1-20, June.
    7. Xiao, Fei & Chen, Tao & Gan, Zhongyu & Zhang, Ruixuan, 2023. "The influence of external operating conditions on membrane drying faults of proton-exchange membrane fuel cells," Energy, Elsevier, vol. 285(C).
    8. Zhao, Taotao & Fan, Wenxuan & Cui, Hao & Liu, Mingxin & Zheng, Tongxi & Luan, Yang & Su, Xunkang & Liu, Chaozong & Lu, Guolong & Liu, Zhenning, 2025. "3D hybrid-wettability fin channel with dual enhancement of drainage and mass transfer to improve PEMFC performance," Energy, Elsevier, vol. 315(C).
    9. Zeng, Ziteng & Hu, Zunyan & Liu, Huize & Zhang, Yifu & Ye, Kang & Li, Jianqiu & Xu, Liangfei & Ouyang, Minggao & Dong, Kan, 2025. "Distribution characteristics and control optimization of anode and cathode water in fuel cells under low humidification," Applied Energy, Elsevier, vol. 377(PD).
    10. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    11. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    12. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    13. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    14. Ewa Janicka & Michal Mielniczek & Lukasz Gawel & Kazimierz Darowicki, 2021. "Optimization of the Relative Humidity of Reactant Gases in Hydrogen Fuel Cells Using Dynamic Impedance Measurements," Energies, MDPI, vol. 14(11), pages 1-11, May.
    15. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    16. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    17. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    18. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    19. Li, Ruitao & Ma, Tiancai & Guo, Huijin & Zhao, Jinghui & Zhou, Julong & Shi, Lei & Lin, Weikang & Yao, Naiyuan & Yang, Yanbo, 2025. "Investigation on performance recovery and consistency of proton exchange membrane fuel cell stack under automotive accelerated stress test," Applied Energy, Elsevier, vol. 383(C).
    20. Zhiming Zhang & Sai Wu & Huimin Miao & Tong Zhang, 2022. "Numerical Investigation of Flow Channel Design and Tapered Slope Effects on PEM Fuel Cell Performance," Sustainability, MDPI, vol. 14(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.