IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925004830.html
   My bibliography  Save this article

Recent advancements in designing high-performance proton exchange membrane fuel cells: A comprehensive review

Author

Listed:
  • Ahmed, Saad
  • Beauger, Christian
  • Zada, Amir
  • Iqbal, Waseem
  • Ahmed, Naveed
  • Anwar, Muhammad Tuoqeer
  • Hassan, Muhammad

Abstract

Proton-exchange membrane fuel cells (PEMFCs) are promising energy storage modules notable for their compatibility with dynamic current loads and efficient production of high-purity H2. However, significant challenges hinder their widespread adoption, particularly concerning power density and efficiency. This comprehensive review addresses various strategies to enhance the power density of PEMFCs. It suggests contemporary, high-performance PEMFCs development strategies, emphasizing the advancements in catalysis, proton exchange membranes, gas diffusion layers, bipolar plates, and Membrane Electrode Assemblies (MEAs). In addition, we have discussed the latest progress in engineering PEMFC systems, emphasizing improvements in efficiency, cost-effectiveness, and durability under acidic conditions. By introducing recent research findings and identifying the major hurdles, we offer valuable insights to researchers and industry professionals to recognize the role of PEMFCs in various fields. Our review examines important factors and suggests possible ways to close the division between theoretical progress and real-world implementation, ultimately helping to achieve a sustainable energy future.

Suggested Citation

  • Ahmed, Saad & Beauger, Christian & Zada, Amir & Iqbal, Waseem & Ahmed, Naveed & Anwar, Muhammad Tuoqeer & Hassan, Muhammad, 2025. "Recent advancements in designing high-performance proton exchange membrane fuel cells: A comprehensive review," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004830
    DOI: 10.1016/j.apenergy.2025.125753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Liu & Yi Li & Jiandang Xue & Weikang Zhu & Junfeng Zhang & Yan Yin & Yanzhou Qin & Kui Jiao & Qing Du & Bowen Cheng & Xupin Zhuang & Jianxin Li & Michael D. Guiver, 2019. "Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Li, Yi & Yuan, Fang & Weng, Rengang & Xi, Fang & Liu, Wei, 2021. "Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells," Energy, Elsevier, vol. 235(C).
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    4. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    5. Kwan-Soo Lee & Jacob S. Spendelow & Yoong-Kee Choe & Cy Fujimoto & Yu Seung Kim, 2016. "An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    6. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    7. Li, Zheng & Wang, Yameng & Mu, Yongbiao & Wu, Buke & Jiang, Yuting & Zeng, Lin & Zhao, Tianshou, 2023. "Recent advances in the anode catalyst layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Zhi Li & Rong Yu & Jinglu Huang & Yusheng Shi & Diyang Zhang & Xiaoyan Zhong & Dingsheng Wang & Yuen Wu & Yadong Li, 2015. "Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    10. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    11. Jahami, Mahdi & Singh, Paramvir & Khandelwal, Bhupendra, 2025. "Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California's 2035 goals," Renewable Energy, Elsevier, vol. 243(C).
    12. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Lin, Rui & Lu, Ying & Xu, Ji & Huo, Jiawei & Cai, Xin, 2022. "Investigation on performance of proton exchange membrane electrolyzer with different flow field structures," Applied Energy, Elsevier, vol. 326(C).
    14. Chi Hoon Park & So Young Lee & Doo Sung Hwang & Dong Won Shin & Doo Hee Cho & Kang Hyuck Lee & Tae-Woo Kim & Tae-Wuk Kim & Mokwon Lee & Deok-Soo Kim & Cara M. Doherty & Aaron W. Thornton & Anita J. Hi, 2016. "Nanocrack-regulated self-humidifying membranes," Nature, Nature, vol. 532(7600), pages 480-483, April.
    15. Madheswaran, Dinesh Kumar & Thangamuthu, Mohanraj & Krishna, Ram & Gopi, Suresh & Geo Varuvel, Edwin, 2024. "Enhanced oxidation resistance and electrochemical performance of PEMFC gas diffusion layer through [EMIM][TFSI] ionic liquid coating," Renewable Energy, Elsevier, vol. 235(C).
    16. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    17. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    18. Alharbi, Abdullah G. & Olabi, A.G. & Rezk, Hegazy & Fathy, Ahmed & Abdelkareem, Mohammad Ali, 2024. "Optimized energy management and control strategy of photovoltaic/PEM fuel cell/batteries/supercapacitors DC microgrid system," Energy, Elsevier, vol. 290(C).
    19. Sungjae Yoo & Jeongwon Kim & Sungwoo Choi & Doojae Park & Sungho Park, 2019. "Two-dimensional nanoframes with dual rims," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    20. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    21. Samanta, Rajib & Mishra, Ranjit & Manna, Biplab Kumar & Barman, Sudip, 2022. "IrO2 modified Crystalline-PdO nanowires based bi-functional electro-catalyst for HOR/HER in acid and base," Renewable Energy, Elsevier, vol. 191(C), pages 151-160.
    22. Majlan, E.H. & Rohendi, D. & Daud, W.R.W. & Husaini, T. & Haque, M.A., 2018. "Electrode for proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 117-134.
    23. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    24. Sun, Zhe & Sun, Junlong & Xie, Xiangpeng & An, Zongquan & Hong, Yiwei & Sun, Zhixin, 2025. "Multi-population mutative moth-flame optimization algorithm for modeling and the identification of PEMFC parameters," Renewable Energy, Elsevier, vol. 240(C).
    25. Hongying Tang & Kang Geng & Lei Wu & Junjie Liu & Zhiquan Chen & Wei You & Feng Yan & Michael D. Guiver & Nanwen Li, 2022. "Fuel cells with an operational range of –20 °C to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes," Nature Energy, Nature, vol. 7(2), pages 153-162, February.
    26. Yin, Yan & Yue, Runfei & Pei, Yabiao & Zhu, Weikang & Liu, Haotian & Yin, Shuoyao & Liu, Xin & Wang, Lianqin & Zhang, Junfeng, 2023. "Synthesis of fine nano-Pt supported on carbon nanotubes for hydrogen oxidation under alkaline conditions," Energy, Elsevier, vol. 281(C).
    27. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fengxiang & Wang, Shuang & Chen, Hao & Li, Jinsheng & Wang, Xu & Mao, Tiejun & Wang, Zhe, 2021. "The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs," Renewable Energy, Elsevier, vol. 163(C), pages 1692-1700.
    2. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    4. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    5. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    6. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    7. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Cai, Weiqiang & Zhou, Ruidong & Wang, Chenxia & Xie, Chao & Xiao, Liusheng & Zhang, Zhonggang & Yang, Chao & Yuan, Jinliang, 2025. "On characteristics and research development of coupled fuel cell stack performance and stress," Applied Energy, Elsevier, vol. 388(C).
    9. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    10. Sungjae Yoo & Jaewon Lee & Hajir Hilal & Insub Jung & Woongkyu Park & Joong Wook Lee & Soobong Choi & Sungho Park, 2022. "Nesting of multiple polyhedral plasmonic nanoframes into a single entity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. González-Morán, Laura & Suárez, Christian & Iranzo, Alfredo & Han, Lei & Rosa, Felipe, 2024. "A numerical study on heat transfer for serpentine-type cooling channels in a PEM fuel cell stack," Energy, Elsevier, vol. 307(C).
    12. Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Fang, Haoyan & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Spatial distribution characteristics of various physical quantities in PEM fuel cells: Entire morphology investigation based on bifurcated gas distribution zones," Applied Energy, Elsevier, vol. 381(C).
    13. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    14. Ho-Van, Phuc & Lim, Ocktaeck, 2025. "Natural TPMS porous architectures for flow-field patterns to improve mass transport in high current density operations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 381(C).
    15. Zhang, Yong & Zhang, Dongjian & Zhang, Yifang & Jiang, Xiaohui & Yang, Xi & Cao, Jing & Deng, Qihao & Chen, Ben & Liu, Qingshan & Chen, Yisong, 2025. "Investigation of mass spatial distribution characteristics in proton exchange membrane fuel cells: Full-morphology simulation considering “mixed structure” gas distribution zones," Renewable Energy, Elsevier, vol. 243(C).
    16. Luo, Zongkai & Zou, Guofu & Chen, Ke & Chen, Wenshang & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Ben, 2025. "Evolution of current distribution and performance degradation mechanism of PEMFC during transient loading under gas starvation condition: An experimental study," Applied Energy, Elsevier, vol. 388(C).
    17. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    18. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    19. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    20. Jianuo Chen & Xuekun Lu & Lingtao Wang & Wenjia Du & Hengyi Guo & Max Rimmer & Heng Zhai & Yuhan Liu & Paul R. Shearing & Sarah J. Haigh & Stuart M. Holmes & Thomas S. Miller, 2024. "Laser scribed proton exchange membranes for enhanced fuel cell performance and stability," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.