IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223017334.html
   My bibliography  Save this article

Synthesis of fine nano-Pt supported on carbon nanotubes for hydrogen oxidation under alkaline conditions

Author

Listed:
  • Yin, Yan
  • Yue, Runfei
  • Pei, Yabiao
  • Zhu, Weikang
  • Liu, Haotian
  • Yin, Shuoyao
  • Liu, Xin
  • Wang, Lianqin
  • Zhang, Junfeng

Abstract

Developing highly efficient and robust hydrogen oxidation reaction (HOR) catalysts with low Pt loading is essential for anion exchange membrane fuel cells (AEMFCs). Herein, Pt nanoparticles supported on functionalized carbon nanotubes (CNTs) are synthesized by a thermal reduction for HOR. The influence of functionalization and the reduction temperatures on Pt/CNTs have been investigated. The results indicate that Pt/CNT obtained at 250 °C has high activity (77.4 mA mg−1Pt @η = 50 mV, 3.5 times of commercial 20% Pt/C) and superior stability toward HOR, attributed to the high dispersity of ultrafine nano-Pt on the nanotubes. The knowledge obtained in this work may guide the application of CNTs as the support for low Pt catalysts in alkaline HOR.

Suggested Citation

  • Yin, Yan & Yue, Runfei & Pei, Yabiao & Zhu, Weikang & Liu, Haotian & Yin, Shuoyao & Liu, Xin & Wang, Lianqin & Zhang, Junfeng, 2023. "Synthesis of fine nano-Pt supported on carbon nanotubes for hydrogen oxidation under alkaline conditions," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017334
    DOI: 10.1016/j.energy.2023.128339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanrong Xue & Lin Shi & Xuerui Liu & Jinjie Fang & Xingdong Wang & Brian P. Setzler & Wei Zhu & Yushan Yan & Zhongbin Zhuang, 2020. "A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Roudbari, Mohsen Najafi & Ojani, Reza & Raoof, Jahan Bakhsh, 2020. "Nitrogen functionalized carbon nanotubes as a support of platinum electrocatalysts for performance improvement of ORR using fuel cell cathodic half-cell," Renewable Energy, Elsevier, vol. 159(C), pages 1015-1028.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Zhe Jiang & Xuerui Liu & Xiao-Zhi Liu & Shuang Huang & Ying Liu & Ze-Cheng Yao & Yun Zhang & Qing-Hua Zhang & Lin Gu & Li-Rong Zheng & Li Li & Jianan Zhang & Youjun Fan & Tang Tang & Zhongbin Zhuang &, 2023. "Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.