IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33625-x.html
   My bibliography  Save this article

Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium

Author

Listed:
  • Bingxing Zhang

    (Zhejiang University)

  • Baohua Zhang

    (Zhejiang University)

  • Guoqiang Zhao

    (Zhejiang University)

  • Jianmei Wang

    (Zhejiang University)

  • Danqing Liu

    (Zhejiang University)

  • Yaping Chen

    (Zhejiang University)

  • Lixue Xia

    (International School of Materials Science and Engineering, Wuhan University of Technology)

  • Mingxia Gao

    (Zhejiang University)

  • Yongfeng Liu

    (Zhejiang University)

  • Wenping Sun

    (Zhejiang University)

  • Hongge Pan

    (Zhejiang University
    Xi’an Technological University)

Abstract

Overcoming the sluggish kinetics of alkaline hydrogen oxidation reaction (HOR) is challenging but is of critical importance for practical anion exchange membrane fuel cells. Herein, abundant and efficient interfacial active sites are created on ruthenium (Ru) nanoparticles by anchoring atomically isolated chromium coordinated with hydroxyl clusters (Cr1(OH)x) for accelerated alkaline HOR. This catalyst system delivers 50-fold enhanced HOR activity with excellent durability and CO anti-poisoning ability via switching the active sites from Ru surface to Cr1(OH)x-Ru interface. Fundamentally different from the conventional mechanism merely focusing on surface metal sites, the isolated Cr1(OH)x could provide unique oxygen species for accelerating hydrogen or CO spillover from Ru to Cr1(OH)x. Furthermore, the original oxygen species from Cr1(OH)x are confirmed to participate in hydrogen oxidation and H2O formation. The incorporation of such atomically isolated metal hydroxide clusters in heterostructured catalysts opens up new opportunities for rationally designing advanced electrocatalysts for HOR and other complex electrochemical reactions. This work also highlights the importance of size effect of co-catalysts, which should also be paid substantial attention to in the catalysis field.

Suggested Citation

  • Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33625-x
    DOI: 10.1038/s41467-022-33625-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33625-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33625-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Duan & Zi-You Yu & Li Yang & Li-Rong Zheng & Chu-Tian Zhang & Xiao-Tu Yang & Fei-Yue Gao & Xiao-Long Zhang & Xingxing Yu & Ren Liu & Hong-He Ding & Chao Gu & Xu-Sheng Zheng & Lei Shi & Jun Jiang & , 2020. "Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Fuzhan Song & Wei Li & Jiaqi Yang & Guanqun Han & Peilin Liao & Yujie Sun, 2018. "Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Jiayuan Li & Jun Hu & Mingkai Zhang & Wangyan Gou & Sai Zhang & Zhong Chen & Yongquan Qu & Yuanyuan Ma, 2021. "A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Hong Bin Yang & Sung-Fu Hung & Song Liu & Kaidi Yuan & Shu Miao & Liping Zhang & Xiang Huang & Hsin-Yi Wang & Weizheng Cai & Rong Chen & Jiajian Gao & Xiaofeng Yang & Wei Chen & Yanqiang Huang & Hao M, 2018. "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction," Nature Energy, Nature, vol. 3(2), pages 140-147, February.
    5. Yanrong Xue & Lin Shi & Xuerui Liu & Jinjie Fang & Xingdong Wang & Brian P. Setzler & Wei Zhu & Yushan Yan & Zhongbin Zhuang, 2020. "A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Isis Ledezma-Yanez & W. David Z. Wallace & Paula Sebastián-Pascual & Victor Climent & Juan M. Feliu & Marc T. M. Koper, 2017. "Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    7. Shuai Qin & Yu Duan & Xiao-Long Zhang & Li-Rong Zheng & Fei-Yue Gao & Peng-Peng Yang & Zhuang-Zhuang Niu & Ren Liu & Yu Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Min-Rui Gao, 2021. "Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Wenchao Sheng & Zhongbin Zhuang & Minrui Gao & Jie Zheng & Jingguang G. Chen & Yushan Yan, 2015. "Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    9. Woong Hee Lee & Man Ho Han & Young-Jin Ko & Byoung Koun Min & Keun Hwa Chae & Hyung-Suk Oh, 2022. "Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Hao Tan & Bing Tang & Ying Lu & Qianqian Ji & Liyang Lv & Hengli Duan & Na Li & Yao Wang & Sihua Feng & Zhi Li & Chao Wang & Fengchun Hu & Zhihu Sun & Wensheng Yan, 2022. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jon C. Wilson & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2023. "Insights into solvent and surface charge effects on Volmer step kinetics on Pt (111)," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Liuzhuang Xing & Qian Yang & Chen Zhu & Yilian Bai & Yurong Tang & Magnus Rueping & Yunfei Cai, 2023. "Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Guodong Li & Guanqun Han & Lu Wang & Xiaoyu Cui & Nicole K. Moehring & Piran R. Kidambi & De-en Jiang & Yujie Sun, 2023. "Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jiqing Jiao & Qing Yuan & Meijie Tan & Xiaoqian Han & Mingbin Gao & Chao Zhang & Xuan Yang & Zhaolin Shi & Yanbin Ma & Hai Xiao & Jiangwei Zhang & Tongbu Lu, 2023. "Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Libo Zhu & Jian Huang & Ge Meng & Tiantian Wu & Chang Chen & Han Tian & Yafeng Chen & Fantao Kong & Ziwei Chang & Xiangzhi Cui & Jianlin Shi, 2023. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    20. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33625-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.