IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002087.html
   My bibliography  Save this article

Improvement of hydrogen production during in-situ combustion of hydrocarbons using CaO nanoparticles: Enabling subsurface decarbonization and desulfurization

Author

Listed:
  • Cherif, Ali
  • Duncan, Ian J.

Abstract

Cost-effective and large-scale production of hydrogen can be enabled through in-situ combustion (ISC) of hydrocarbons in depleted oil and gas reservoirs. Hydrocarbons are utilized both as a heat source and feedstock for hydrogen-generating reactions. Achieving high and consistent hydrogen yields is highly desirable for commercial production. The CO2 build-up, as hydrogen is generated and preferentially extracted, will gradually lower hydrogen production rates unless the CO2 partial pressure is reduced as the reactions proceed. This study explores the potential for reducing CO2 in the gas phase via in-situ sorption (ISS) by injecting CaO nanoparticles. The results of our thermodynamic analysis (based on the minimization of Gibbs Free Energy) show that at temperatures between 400 and 600 °C (the likely range of temperatures generated during ISC), hydrogen yields can be increased by 49 % compared to ISS-free case at 1 MPa and more than three times at 20 MPa. ISS with CaO will significantly decrease CO2 and H2S concentrations.

Suggested Citation

  • Cherif, Ali & Duncan, Ian J., 2025. "Improvement of hydrogen production during in-situ combustion of hydrocarbons using CaO nanoparticles: Enabling subsurface decarbonization and desulfurization," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002087
    DOI: 10.1016/j.energy.2025.134566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Ha-Jun & Atsbha, Tesfalem Aregawi & Yoon, Taeksang & Shin, Dongkyoung & An, Jihong & Zarei, Mohammadamin & Cherif, Ali & Suh, Sangwon & Lee, Chul-Jin, 2025. "Sustainable and feasible carbon capture and utilization pathways towards net-zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Olabi, Valentina & Jouhara, Hussam, 2024. "An assessment of current hydrogen supply chains in the Gulf Cooperation Council (GCC)," Energy, Elsevier, vol. 299(C).
    3. Huang, Zhuo-Yi & Zhang, Wei & Xu, Chun-Gang & Li, Xiao-Sen & Li, Yun-Hao & Wang, Yi & Chen, Zhao-Yang, 2024. "Effects of multi-walled carbon nanotubes on microstructure transformation of water before carbon dioxide hydrate formation," Energy, Elsevier, vol. 295(C).
    4. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    5. Ding, Xiaoyi & Guo, Pengcheng & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2024. "Feasibility evaluation of a wind/P2G/SOFC/GT multi-energy microgrid system with synthetic fuel based on C-H-O elemental ternary analysis," Energy, Elsevier, vol. 312(C).
    6. Huang, Yue & Zhu, Lin & He, Yangdong & Zeng, Xingyan & Wang, Yuan & Hao, Qiang & Zhang, Chaoli & Zhu, Yifei, 2024. "Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration," Energy, Elsevier, vol. 306(C).
    7. Mosayebi, Amir & Eghbal Ahmadi, Mohammad Hosein, 2022. "Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis," Energy, Elsevier, vol. 261(PB).
    8. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    9. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Im, Junyoung & Gye, Hye-Ri & Wilailak, Supaporn & Yoon, Ha-Jun & Kim, Yongsoo & Kim, Hyungchan & Lee, Chul-Jin, 2024. "Hydrogen liquefaction process using carbon dioxide as a pre-coolant for carbon capture and utilization," Energy, Elsevier, vol. 307(C).
    11. Yin, Yan & Yue, Runfei & Pei, Yabiao & Zhu, Weikang & Liu, Haotian & Yin, Shuoyao & Liu, Xin & Wang, Lianqin & Zhang, Junfeng, 2023. "Synthesis of fine nano-Pt supported on carbon nanotubes for hydrogen oxidation under alkaline conditions," Energy, Elsevier, vol. 281(C).
    12. Zhao, Shuai & Pu, Wanfen & Jiang, Qi & Yuan, Chengdong & Varfolomeev, Mikhail A. & Sudakov, Vladislav, 2023. "Investigation into the key factors influencing the establishment and propagation of combustion front in ultra-deep high-temperature heavy oil reservoirs," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Song & Zeng, Xuelan & Zheng, Yawen & Zhu, Mingming & Wang, Dan & Wang, Junyao, 2025. "Thermodynamic analysis of decarbonizing NGCC power plants by the tail-end green ammonia-driven calcium looping," Energy, Elsevier, vol. 314(C).
    2. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    3. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    4. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    5. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    6. Rettig, E. & Fischhendler, I. & Schlecht, F., 2023. "The meaning of energy islands: Towards a theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Zhan, Honglei & Zhao, Kun & Xiao, Lizhi, 2015. "Spectral characterization of the key parameters and elements in coal using terahertz spectroscopy," Energy, Elsevier, vol. 93(P1), pages 1140-1145.
    8. Changsong Hu & Chao Xu & Xiaojun Xi & Yao He & Tiejun Wang, 2024. "Thermodynamic and Techno-Economic Performance Comparison of Methanol Aqueous Phase Reforming and Steam Reforming for Hydrogen Production," Energies, MDPI, vol. 18(1), pages 1-19, December.
    9. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    10. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, B., 2016. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions," Energy, Elsevier, vol. 116(P1), pages 392-401.
    11. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    12. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    13. Miao, Huiying & Yu, Yadong & Wan, Yanming & Zhang, Yan & Ma, Tieju, 2024. "Levelized cost of long-distance large-scale transportation of hydrogen in China," Energy, Elsevier, vol. 310(C).
    14. Chen, Ao & Cheng, Min & Huang, Danlian & Zhang, Gaoxia & Wang, Wenjun & Du, Li & Wang, Guangfu & Liu, Hongda & Chen, Yongxi & Xiao, Wenjun & Shi, Qingkai, 2024. "Versatile metal-free carbon materials from ZIF-8: Insights into construction strategies, properties, applications and structure-activity relationships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Bak, Youngseok & Ryu, Hyuncheol & Choi, Gobong & Lee, Dongwoo & Lee, Jong Min, 2025. "Optimization of operational strategies for industrial applications of solar-based green hydrogen," Applied Energy, Elsevier, vol. 377(PD).
    16. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Study on the load following characteristics of a distributed IGCC for independent microgrid," Energy, Elsevier, vol. 115(P1), pages 13-25.
    17. Sahu, Pradeep & V, Prabu, 2021. "Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems," Energy, Elsevier, vol. 233(C).
    18. Scheffler, Florian & Imdahl, Christoph & Zellmer, Sabrina & Herrmann, Christoph, 2025. "Techno-economic and environmental assessment of renewable hydrogen import routes from overseas in 2030," Applied Energy, Elsevier, vol. 380(C).
    19. Prabu, V. & Mallick, Nirmal, 2015. "Coalbed methane with CO2 sequestration: An emerging clean coal technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 229-244.
    20. Sitar, Rok & D'Aquila, Alexandra & Jechura, John L. & Wolden, Colin A., 2024. "Techno-economic analysis of zero-carbon ammonia-hydrogen fuel blend production through a catalytic membrane reformer and packed bed reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.