IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics0360544221018740.html
   My bibliography  Save this article

Study on pyrolysis characteristics of lump coal in the context of underground coal gasification

Author

Listed:
  • Xin, Lin
  • An, Mingyu
  • Feng, Mingze
  • Li, Kaixuan
  • Cheng, Weimin
  • Liu, Weitao
  • Hu, Xiangming
  • Wang, Zhigang
  • Han, Limin

Abstract

Coal reaction in dry distillation zone, as an essential step in underground coal gasification (UCG), is of great significance to be studied about its characteristics in a comprehensive way. This study simulated the pyrolysis process of lump coal in UCG tunnel in a laboratory. Lump coal samples were heated in nitrogen environment at 200–600 °C. The functional groups, pore structure, and microcrystalline structure of coal samples were analyzed by Fourier transform infrared spectrometer, scanning electron microscope, and X-ray diffractometer. The results showed that, as final pyrolysis temperature increased, the contents of hydroxyl, aliphatic, and aromatic groups all showed decreasing trends. The escalation of CHar/CC and CH2/CH3 implied that the condensation degree of aromatic structure and the branching degree of fatty chain increased. With the temperature increasing, volatile substances such as CO2 and CH4 were released. Coal samples had higher porosity and gradually turned hollowed. The d002 (Interlinear Spacing of Microcrystalline) of the coal sample decreased, Lc (final stacking height) increased and Lc/d002 (stacking layer numbers) decreased, indicating that the crystal structure of coal samples tended to be more disordered.

Suggested Citation

  • Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018740
    DOI: 10.1016/j.energy.2021.121626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221018740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    2. Laciak, Marek & Kostúr, Karol & Durdán, Milan & Kačur, Ján & Flegner, Patrik, 2016. "The analysis of the underground coal gasification in experimental equipment," Energy, Elsevier, vol. 114(C), pages 332-343.
    3. Jiang, Liangliang & Chen, Zhangxin & Farouq Ali, S.M., 2019. "Feasibility of carbon dioxide storage in post-burn underground coal gasification cavities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    5. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    6. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    7. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    8. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
    9. Eftekhari, Ali Akbar & Van Der Kooi, Hedzer & Bruining, Hans, 2012. "Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide," Energy, Elsevier, vol. 45(1), pages 729-745.
    10. Su, Fa-qiang & Hamanaka, Akihiro & Itakura, Ken-ichi & Zhang, Wenyan & Deguchi, Gota & Sato, Kohki & Takahashi, Kazuhiro & Kodama, Jun-ichi, 2018. "Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system," Applied Energy, Elsevier, vol. 223(C), pages 82-92.
    11. Yi, Lan & Feng, Jie & Li, Wen-Ying, 2019. "Evaluation on a combined model for low-rank coal pyrolysis," Energy, Elsevier, vol. 169(C), pages 1012-1021.
    12. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    13. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    14. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    15. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    16. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    17. Mocek, Piotr & Pieszczek, Marek & Świądrowski, Jerzy & Kapusta, Krzysztof & Wiatowski, Marian & Stańczyk, Krzysztof, 2016. "Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland," Energy, Elsevier, vol. 111(C), pages 313-321.
    18. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    19. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Lele & Zhou, Sibo & Xu, Xiangcen & Qin, Botao, 2022. "Importance evaluation for influencing factors of underground coal gasification through ex-situ experiment and analytic hierarchy process," Energy, Elsevier, vol. 261(PA).
    2. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    3. Zhao, Can & Ge, Lichao & Li, Xi & Zuo, Mingjin & Xu, Chunyao & Chen, Simo & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Effects of the carbonization temperature and intermediate cooling mode on the properties of coal-based activated carbon," Energy, Elsevier, vol. 273(C).
    4. Zhao, Can & Ge, Lichao & Mai, Longhui & Chen, Simo & Li, Qian & Yao, Lei & Li, Dongyang & Wang, Yang & Xu, Chang, 2023. "Preparation and performance of coal-based activated carbon based on an orthogonal experimental study," Energy, Elsevier, vol. 274(C).
    5. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    6. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    7. Ge, Lichao & Zhao, Can & Zhou, Tianhong & Chen, Simo & Li, Qian & Wang, Xuguang & Shen, Dong & Wang, Yang & Xu, Chang, 2023. "An analysis of the carbonization process of coal-based activated carbon at different heating rates," Energy, Elsevier, vol. 267(C).
    8. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).
    9. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    2. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    3. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    4. Zhen Dong & Haiyang Yi & Yufeng Zhao & Xinggang Wang & Tingxiang Chu & Junjie Xue & Hanqi Wu & Shanshan Chen & Mengyuan Zhang & Hao Chen, 2022. "Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification," Energies, MDPI, vol. 15(19), pages 1-15, October.
    5. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    6. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    7. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    8. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    9. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    11. Stefan Zelenak & Erika Skvarekova & Andrea Senova & Gabriel Wittenberger, 2021. "The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy," Energies, MDPI, vol. 14(13), pages 1-15, June.
    12. Christopher Otto & Thomas Kempka, 2015. "Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes," Energies, MDPI, vol. 8(6), pages 1-28, June.
    13. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    14. Mohammadreza Shahbazi & Mehdi Najafi & Mohammad Fatehi Marji, 2019. "On the mitigating environmental aspects of a vertical well in underground coal gasification method," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 373-398, March.
    15. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    16. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    17. Karol Kostúr & Marek Laciak & Milan Durdan, 2018. "Some Influences of Underground Coal Gasification on the Environment," Sustainability, MDPI, vol. 10(5), pages 1-31, May.
    18. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    19. Natalie Nakaten & Thomas Kempka, 2019. "Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness," Energies, MDPI, vol. 12(17), pages 1-28, August.
    20. Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.