IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003864.html
   My bibliography  Save this article

A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis

Author

Listed:
  • Wang, Xiaorui
  • Zhang, Qinghe
  • Yuan, Liang

Abstract

Underground coal gasification is an essential means of meeting the growing energy needs of some countries. In this paper, a new numerical simulation method of thermal-force-chemical-displacement multi-field coupling is developed, and in order to better adapt to the actual working conditions, taking Shanjiaoshu Coal Mine as the geological background, the first gasification working face of No. 12 coal seam is simulated based on the controlled retraction injection point technology. This method is used to simulate the heating of coal body by the ignition device at the initial stage of UCG, the chemical-thermal changes triggered by spontaneous combustion of the coal body under the continuous backward movement of the injection point, and the simulation of the formation of the cavity after the coal gasification reaction. Finally, the evolution of temperature and displacement fields in No.12 coal seam after gasification reaction is analyzed. Therefore, this study aims to simulate the actual working conditions more realistically, optimize the UCG technology, and produce more clean energy syngas to improve the energy situation in China.

Suggested Citation

  • Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003864
    DOI: 10.1016/j.energy.2024.130614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.