IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v46y2012i1p351-358.html
   My bibliography  Save this article

Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation

Author

Listed:
  • Prabu, V.
  • Jayanti, S.

Abstract

Underground coal gasification (UCG) is promising to be an important means of meeting the increasing energy demand in several countries. UCG is inherently an unsteady process since a number of parameters, such as the growth of the cavity, inherent variation in the properties of the coal along the seam, quantity of water influx, ash layer build-up, affect the rates of the homogeneous and heterogeneous reactions occurring therein. In the present study, UCG conditions have been simulated using laboratory scale borehole combustion experiments for three coals and wood block and the effect of some of these parameters is investigated using pure oxygen or oxygen and steam as the gasifying agent. It is shown that, unlike recent reports in the literature, product gas of reasonably high calorific value can be produced on a sustained basis without having to use highly superheated steam as the gasifying agent. Incorporating the results into an integrated underground gasification steam cycle (IUGSC) based power generation system with carbon capture and storage (CCS) shows that the net efficiency penalty for CCS is significantly less than that estimated for conventional systems.

Suggested Citation

  • Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:351-358
    DOI: 10.1016/j.energy.2012.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212006287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    2. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    3. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Sapru, R.K. & Sharma, R.K. & Aghalayam, Preeti, 2011. "Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification," Energy, Elsevier, vol. 36(3), pages 1776-1784.
    4. Khadse, Anil & Qayyumi, Mohammed & Mahajani, Sanjay & Aghalayam, Preeti, 2007. "Underground coal gasification: A new clean coal utilization technique for India," Energy, Elsevier, vol. 32(11), pages 2061-2071.
    5. Liszka, M. & Ziębik, A., 2010. "Coal-fired oxy-fuel power unit – Process and system analysis," Energy, Elsevier, vol. 35(2), pages 943-951.
    6. Yang, Lanhe & Liang, Jie & Yu, Li, 2003. "Clean coal technology—Study on the pilot project experiment of underground coal gasification," Energy, Elsevier, vol. 28(14), pages 1445-1460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    2. Javed, Syed Bilal & Uppal, Ali Arshad & Samar, Raza & Bhatti, Aamer Iqbal, 2021. "Design and implementation of multi-variable H∞ robust control for the underground coal gasification project Thar," Energy, Elsevier, vol. 216(C).
    3. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    4. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    5. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    6. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    7. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    8. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    9. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    10. Cui, Yong & Liang, Jie & Wang, Zhangqing & Zhang, Xiaochun & Fan, Chenzi & Liang, Dongyu & Wang, Xuan, 2014. "Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification," Applied Energy, Elsevier, vol. 131(C), pages 9-19.
    11. Prabu, V. & Mallick, Nirmal, 2015. "Coalbed methane with CO2 sequestration: An emerging clean coal technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 229-244.
    12. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    13. Patel, Vimal R. & Upadhyay, Darshit S. & Patel, Rajesh N., 2014. "Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier," Energy, Elsevier, vol. 78(C), pages 323-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    2. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    3. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    4. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    5. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    6. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    7. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    8. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    9. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    10. Laciak, Marek & Kostúr, Karol & Durdán, Milan & Kačur, Ján & Flegner, Patrik, 2016. "The analysis of the underground coal gasification in experimental equipment," Energy, Elsevier, vol. 114(C), pages 332-343.
    11. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    12. Xi Lin & Qingya Liu & Zhenyu Liu, 2018. "Estimation of Effective Diffusion Coefficient of O 2 in Ash Layer in Underground Coal Gasification by Thermogravimetric Apparatus," Energies, MDPI, vol. 11(2), pages 1-14, February.
    13. Yufeng Zhao & Zhen Dong & Yanpeng Chen & Hao Chen & Shanshan Chen & Mengyuan Zhang & Junjie Xue & Xinggang Wang & Lixin Jiao, 2023. "Physical Simulation Test of Underground Coal Gasification Cavity Evolution in the Horizontal Segment of U-Shaped Well," Energies, MDPI, vol. 16(8), pages 1-15, April.
    14. Saulov, Dmitry N. & Plumb, Ovid A. & Klimenko, A.Y., 2010. "Flame propagation in a gasification channel," Energy, Elsevier, vol. 35(3), pages 1264-1273.
    15. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    16. Hongtao Liu & Feng Chen & Yuanyuan Wang & Gang Liu & Hong Yao & Shuqin Liu, 2018. "Experimental Study of Reverse Underground Coal Gasification," Energies, MDPI, vol. 11(11), pages 1-13, October.
    17. Li, Xin & Tian, Jijun & Ju, Yiwen & Chen, Yanpeng, 2022. "Permeability variations of lignite and bituminous coals under elevated pyrolysis temperatures (35–600 °C): An experimental study," Energy, Elsevier, vol. 254(PA).
    18. Oleg Bazaluk & Vasyl Lozynskyi & Volodymyr Falshtynskyi & Pavlo Saik & Roman Dychkovskyi & Edgar Cabana, 2021. "Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process," Energies, MDPI, vol. 14(14), pages 1-18, July.
    19. Md M. Khan & Joseph P. Mmbaga & Ahad S. Shirazi & Japan Trivedi & Qingzia Liu & Rajender Gupta, 2015. "Modelling Underground Coal Gasification—A Review," Energies, MDPI, vol. 8(11), pages 1-66, November.
    20. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:351-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.