IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1277-1290.html
   My bibliography  Save this article

Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar

Author

Listed:
  • Javed, Syed Bilal
  • Uppal, Ali Arshad
  • Bhatti, Aamer Iqbal
  • Samar, Raza

Abstract

Underground coal gasification (UCG) is a promising clean coal technology to convert unmineable and deep coal reserves into syngas, which can be used in many industrial applications. In UCG field, real time monitoring of hydrological and geological conditions such as water influx rate, cavity growth and its interaction with overburden is a formidable task. UCG project Thar (UPT) lacks real time data acquisition system to monitor these parameters. In this work, a 3D axisymmetric cavity simulation model (CAVSIM) is parameterized with operating conditions of UPT and properties of Lignite B coal of Thar coal fields. For model validation, a comparison has been made between simulated and the UPT field data for the composition and heating value of syngas. The results of CAVSIM are also compared with our previous ID packed bed model, which show the superiority of CAVSIM model. Moreover, a comprehensive simulation study has been carried out to predict the cavity growth and its interaction with overburden. The effect of operating parameters of UPT on volumetric cavity growth and heating value of syngas are also investigated.

Suggested Citation

  • Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1277-1290
    DOI: 10.1016/j.energy.2019.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930194X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    2. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    3. Sathre, Roger & Gustavsson, Leif & Truong, Nguyen Le, 2017. "Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture," Energy, Elsevier, vol. 122(C), pages 711-723.
    4. Akihiro Hamanaka & Fa-qiang Su & Ken-ichi Itakura & Kazuhiro Takahashi & Jun-ichi Kodama & Gota Deguchi, 2017. "Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG) Based on Laboratory Scale Experiment: Development of Co-Axial UCG System," Energies, MDPI, vol. 10(2), pages 1-11, February.
    5. Blinderman, M.S. & Saulov, D.N. & Klimenko, A.Y., 2008. "Forward and reverse combustion linking in underground coal gasification," Energy, Elsevier, vol. 33(3), pages 446-454.
    6. Richard Heinberg & David Fridley, 2010. "The end of cheap coal," Nature, Nature, vol. 468(7322), pages 367-369, November.
    7. Yang, Lanhe & Liang, Jie & Yu, Li, 2003. "Clean coal technology—Study on the pilot project experiment of underground coal gasification," Energy, Elsevier, vol. 28(14), pages 1445-1460.
    8. Imran, Muhammad & Kumar, Dileep & Kumar, Naresh & Qayyum, Abdul & Saeed, Ahmed & Bhatti, Muhammad Shamim, 2014. "Environmental concerns of underground coal gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 600-610.
    9. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    10. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javed, Syed Bilal & Uppal, Ali Arshad & Samar, Raza & Bhatti, Aamer Iqbal, 2021. "Design and implementation of multi-variable H∞ robust control for the underground coal gasification project Thar," Energy, Elsevier, vol. 216(C).
    2. Afaq Ahmed & Syed Bilal Javed & Ali Arshad Uppal & Jamshed Iqbal, 2023. "Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process," Mathematics, MDPI, vol. 11(11), pages 1-26, May.
    3. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    4. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    2. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    3. Hongtao Liu & Feng Chen & Yuanyuan Wang & Gang Liu & Hong Yao & Shuqin Liu, 2018. "Experimental Study of Reverse Underground Coal Gasification," Energies, MDPI, vol. 11(11), pages 1-13, October.
    4. Javed, Syed Bilal & Uppal, Ali Arshad & Samar, Raza & Bhatti, Aamer Iqbal, 2021. "Design and implementation of multi-variable H∞ robust control for the underground coal gasification project Thar," Energy, Elsevier, vol. 216(C).
    5. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    6. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    7. Xi Lin & Qingya Liu & Zhenyu Liu, 2018. "Estimation of Effective Diffusion Coefficient of O 2 in Ash Layer in Underground Coal Gasification by Thermogravimetric Apparatus," Energies, MDPI, vol. 11(2), pages 1-14, February.
    8. Md M. Khan & Joseph P. Mmbaga & Ahad S. Shirazi & Japan Trivedi & Qingzia Liu & Rajender Gupta, 2015. "Modelling Underground Coal Gasification—A Review," Energies, MDPI, vol. 8(11), pages 1-66, November.
    9. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    10. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    11. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    12. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    13. Cui, Yong & Liang, Jie & Wang, Zhangqing & Zhang, Xiaochun & Fan, Chenzi & Liang, Dongyu & Wang, Xuan, 2014. "Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification," Applied Energy, Elsevier, vol. 131(C), pages 9-19.
    14. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    15. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    16. Christopher Otto & Thomas Kempka, 2015. "Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes," Energies, MDPI, vol. 8(6), pages 1-28, June.
    17. Mohammadreza Shahbazi & Mehdi Najafi & Mohammad Fatehi Marji, 2019. "On the mitigating environmental aspects of a vertical well in underground coal gasification method," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 373-398, March.
    18. Yufeng Zhao & Zhen Dong & Yanpeng Chen & Hao Chen & Shanshan Chen & Mengyuan Zhang & Junjie Xue & Xinggang Wang & Lixin Jiao, 2023. "Physical Simulation Test of Underground Coal Gasification Cavity Evolution in the Horizontal Segment of U-Shaped Well," Energies, MDPI, vol. 16(8), pages 1-15, April.
    19. Saulov, Dmitry N. & Plumb, Ovid A. & Klimenko, A.Y., 2010. "Flame propagation in a gasification channel," Energy, Elsevier, vol. 35(3), pages 1264-1273.
    20. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1277-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.