IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222015584.html
   My bibliography  Save this article

Inhibitory effect of green antioxidants acting on surface groups and structure on lignite

Author

Listed:
  • Hou, Ya-nan
  • Nie, Bai-sheng
  • Zhang, Zhe-hao
  • Kong, Fan-bei
  • Zhao, Dan
  • Wang, Xiao-tong
  • Wang, Cai-ping

Abstract

To contain coal fires, three green antioxidants of plant extract which cover resveratrol (Res), tea polyphenols (TP), and β-carotene (β-car) are investigated in this paper, and their inhibitory effects on surface groups and structure are revealed. X-ray diffraction test tells that antioxidants exert a slight augment of d100 and Lc and are able to destroy the unstable side chains to some extent. Though coal samples are affected by antioxidants, minimal differences of aromatic structure have been proved. Fourier-transform infrared spectroscopy technique is employed and a new concept of influence sensitivity value is introduced. The results indicate that antioxidants and addition amounts have an impact on various groups, and the majority of groups tend to be inhibited within 3 wt% addition. Further, the optimal inhibitory concentration of Res, TP, and β-car is 1 wt%, 3 wt%, and 1 wt%, respectively. Combined with gaseous indexes, CO2 emissions of Res and TP exhibit a wave variation under 100 °C, and exponential growths of others occurred twice is acquired. Antioxidants can bring out the decline of apparent activation energy (Ea), and TP worked most brilliantly and it increases Ea by 7.503 kJ/mol. In summary, the order of inhibitory effect is TP > Res > β-car.

Suggested Citation

  • Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015584
    DOI: 10.1016/j.energy.2022.124655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jie & Zheng, Nan & Wang, Jie, 2016. "Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures," Applied Energy, Elsevier, vol. 173(C), pages 438-447.
    2. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    3. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    4. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    5. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    6. Lü, Hui-Fei & Xiao, Yang & Deng, Jun & Li, Da-jiang & Yin, Lan & Shu, Chi-Min, 2019. "Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations," Energy, Elsevier, vol. 186(C).
    7. Liu, Fang-Jing & Wei, Xian-Yong & Fan, Maohong & Zong, Zhi-Min, 2016. "Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review," Applied Energy, Elsevier, vol. 170(C), pages 415-436.
    8. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    2. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    2. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    3. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    4. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    5. Guo, Shengli & Yang, Wenwang & Yuan, Shujie & Zhuo Yan, & Geng, Weile, 2022. "Experimental investigation of erosion effect on microstructure and oxidation characteristics of long-flame coal," Energy, Elsevier, vol. 259(C).
    6. Huang, Zhian & Song, Donghong & Hu, Xiangming & Zhang, Yinghua & Gao, Yukun & Quan, Sainan & Yin, Yichao & Yang, Yifu & Luo, Hongsen & Ji, Yucheng, 2022. "A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 256(C).
    7. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    8. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    9. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    10. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    11. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    12. Shi, Quanlin & Jiang, Wenjie & Qin, Botao & Hao, Mingyue & He, Zhenyu, 2023. "Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal," Energy, Elsevier, vol. 284(C).
    13. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    14. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    15. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    16. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    17. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    18. Wang, Chang'an & Wu, Song & Lv, Qiang & Liu, Xuan & Chen, Wufeng & Che, Defu, 2017. "Study on correlations of coal chemical properties based on database of real-time data," Applied Energy, Elsevier, vol. 204(C), pages 1115-1123.
    19. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    20. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.