Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128533
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni & Zhang, Jiaxin, 2023. "Inhibiting effect and mechanism of polyethylene glycol - Citric acid on coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
- Xue, Liming & Zhang, Wenjie & Zheng, Zhixue & Liu, Zhe & Meng, Shuo & Li, Huaqing & Du, Yulin, 2021. "Measurement and influential factors of the efficiency of coal resources of China’s provinces: Based on Bootstrap-DEA and Tobit," Energy, Elsevier, vol. 221(C).
- Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
- Xiao, Han-min & Ma, Xiao-qian & Lai, Zhi-yi, 2009. "Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal," Applied Energy, Elsevier, vol. 86(9), pages 1741-1745, September.
- You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
- Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
- Huang, Zhian & Song, Donghong & Hu, Xiangming & Zhang, Yinghua & Gao, Yukun & Quan, Sainan & Yin, Yichao & Yang, Yifu & Luo, Hongsen & Ji, Yucheng, 2022. "A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 256(C).
- Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
- Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
- Xue, Di & Hu, Xiangming & Sun, Gongzheng & Wang, Kai & Liu, Tongyu & Wang, Jiqiang & Wang, Fusheng, 2023. "A study on a Janus-type composite solidified foam and its characteristics for preventing and controlling spontaneous combustion of coal," Energy, Elsevier, vol. 275(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
- Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
- Jiamin Tong & Yongbo Zhang & Na Zhao & Aijing Wu & Feifei Shi & Junxing Chen, 2023. "Study on the Temperature Field Change Characteristics of Coal Gangue Dumps under the Influence of Ambient Temperature in Heat Pipe Treatment," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
- Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
- Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
- Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
- Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
- Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
- Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
- Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
- Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
- Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
- Chow, Sheung Chi & Wenjing, Xu & Xiaoyang, Wu, 2014. "Efficiency of electricity use and productivity change of electricity in China: A nonparametric approach," MPRA Paper 62972, University Library of Munich, Germany.
- Xi, Xian & Tao, Yifan & Jiang, Shuguang & Yin, Chenchen, 2023. "Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging," Energy, Elsevier, vol. 281(C).
- Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
- Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
- Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
- Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
- Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
More about this item
Keywords
Coal spontaneous combustion; Tea polyphenols; Foamed gel; Nano; Fireproof performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.