IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics036054422501566x.html
   My bibliography  Save this article

Design and multi-objective optimization of co-production system of hydrogen and electricity via integration of methanol steam reforming, fuel cell and electrochemical hydrogen pump

Author

Listed:
  • Cheng, Andi
  • Yi, Huijun
  • Xiao, Wu
  • Ruan, Xuehua
  • Jiang, Xiaobin
  • He, Gaohong

Abstract

In this work, a distributed co-production system of electricity and hydrogen based on electrochemical hydrogen pump (EHP) enhancement was proposed to simultaneously meet user electricity and hydrogen demands. Methanol reformate gas was used to generate power through fuel cells firstly, and then entered EHP to produce pressurized hydrogen, which improving the utilization value of hydrogen, and realizing cascade utilization of hydrogen with different concentrations. Subsequently, a total of 46 datasets were designed based on the Box-Behnken Design, and a response surface surrogate model with 4 responses, 5 factors, and 3 levels was established for the analysis of multi-parameter interaction of the entire system. Furtherly, the multi-objective optimization of system net power, annual hydrogen production, levelized cost of electricity, and hydrogen was carried out using the NSGA-II, which appropriate solution under different application scenarios were selected by LINMAP and TOPSIS methods, which showed that the novel co-production system achieved an levelized cost of electricity and hydrogen are 0.1–0.19 $/kW∙h and 2.2–8.15 $/kgH2, offering a reliable solution for processes enhancing in future distributed energy systems.

Suggested Citation

  • Cheng, Andi & Yi, Huijun & Xiao, Wu & Ruan, Xuehua & Jiang, Xiaobin & He, Gaohong, 2025. "Design and multi-objective optimization of co-production system of hydrogen and electricity via integration of methanol steam reforming, fuel cell and electrochemical hydrogen pump," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s036054422501566x
    DOI: 10.1016/j.energy.2025.135924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501566X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    2. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    3. Authayanun, Suthida & Mamlouk, Mohamed & Scott, Keith & Arpornwichanop, Amornchai, 2013. "Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications," Applied Energy, Elsevier, vol. 109(C), pages 192-201.
    4. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    5. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    6. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    7. Xiao, Wu & Wang, Kaifeng & Jiang, Xiaobin & Li, Xiangcun & Wu, Xuemei & Hao, Ze & He, Gaohong, 2019. "Simultaneous optimization strategies for heat exchanger network synthesis and detailed shell-and-tube heat-exchanger design involving phase changes using GA/SA," Energy, Elsevier, vol. 183(C), pages 1166-1177.
    8. Seo, Seok-Ho & Oh, Si-Doek & Park, Jinwon & Oh, Hwanyeong & Choi, Yoon-Young & Lee, Won-Yong & Kwak, Ho-Young, 2021. "Thermodynamic, exergetic, and thermoeconomic analyses of a 1-kW proton exchange membrane fuel cell system fueled by natural gas," Energy, Elsevier, vol. 217(C).
    9. Chiu, Wei-Cheng & Hou, Shuhn-Shyurng & Chen, Chen-Yu & Lai, Wei-Hsiang & Horng, Rong-Fang, 2022. "Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system," Energy, Elsevier, vol. 239(PC).
    10. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    11. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
    12. Li, Chengjie & Wang, Zixuan & Liu, He & Guo, Fafu & Xiu, Xinyan & Qin, Jiang & Wei, Liqiu, 2023. "4E analysis of a novel proton exchange membrane fuel cell/engine based cogeneration system with methanol fuel for ship application," Energy, Elsevier, vol. 282(C).
    13. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    14. Mosayebi, Amir & Eghbal Ahmadi, Mohammad Hosein, 2022. "Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis," Energy, Elsevier, vol. 261(PB).
    15. Fernandes, A. & Woudstra, T. & van Wijk, A. & Verhoef, L. & Aravind, P.V., 2016. "Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs," Applied Energy, Elsevier, vol. 173(C), pages 13-28.
    16. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    17. Ma, Zhenxi & Zhang, Naiji & Wu, Wei & Sun, Li & Zhang, Xiaosong & Cai, Liang, 2024. "Carbone-neutral oriented methanol-reforming HT-PEMFC cogeneration based on absorption power refrigeration cycle," Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zaixing & Lin, Yi & Guo, Yu & Liang, Fengli & He, Zhenzong & Kang, Le & Hu, Jiajun & Mao, Junkui & Li, Molly Meng-Jung, 2025. "Feasibility, environmental, and economic analysis of alternative fuel distributed power systems for reliable off-grid energy supply," Applied Energy, Elsevier, vol. 384(C).
    2. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    3. Shi, Zhiwei & Tian, Xinghua & Peng, Qingguo & Huang, Zhixin & Teng, Peng & Yin, Ruixue, 2025. "Effects analysis of hydrogen production from methanol reforming of dual-U reactor for fuel-cell hybrid electric vehicles," Energy, Elsevier, vol. 318(C).
    4. Russo, Danilo & Portarapillo, Maria & Turco, Maria & Di Benedetto, Almerinda, 2025. "Towards H2-free shipboard storage: Energetic and risk analysis of oxidative methanol steam reforming in integrated fuel cell systems," Energy, Elsevier, vol. 320(C).
    5. Taehun Kim & Won-Yong Lee & Seok-Ho Seo & Si-Doek Oh & Ho-Young Kwak, 2023. "Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-Temperature Gas-Cooled and Water-Cooled Nuclear Reactors," Energies, MDPI, vol. 16(24), pages 1-27, December.
    6. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    7. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    8. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    9. Xu, Shiyi & Leng, Shuang & Xie, Junen & Liu, Zekuan & Li, Chengjie & Wang, Jingyi & Chen, Zhengjian & Liao, Mei & Qin, Jiang, 2025. "Performance evaluation and optimization of a distributed generation system integrating high-temperature proton exchange membrane fuel cell and recuperative-regenerative Organic Rankine Cycle," Energy, Elsevier, vol. 319(C).
    10. Perng, Shiang-Wuu & Wu, Horng-Wen, 2023. "Enhancement of proton exchange membrane fuel cell net electric power and methanol-reforming performance by vein channel carved into the reactor plate," Energy, Elsevier, vol. 281(C).
    11. Cheng, Kun & Wang, Jinshuai & Shao, Yunlin & Fu, Lianyan & Wu, Zhengxiang & Zhang, Yuxin & Yang, Jiahao & Wu, Kaiyao & Zhang, Yang & Chen, Weidong & Huang, Xin & Ma, Chuan & Ran, Jingyu, 2024. "Techno-economic assessment and multi-objective optimization of a hybrid methanol-reforming proton exchange membrane fuel cell system with cascading energy utilization," Energy, Elsevier, vol. 313(C).
    12. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    13. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    14. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    15. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    16. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    17. Xie, Peilin & Zhou, Fan & Tan, Sen & Liso, Vincenzo & Sahlin, Simon Lennart, 2025. "Development of a two-layer control and management system for a residential microgrid with HT-PEMFC-based micro-CHP," Applied Energy, Elsevier, vol. 381(C).
    18. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    19. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    20. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s036054422501566x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.