IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008636.html
   My bibliography  Save this article

Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production

Author

Listed:
  • Tang, Xincheng
  • Wu, Yanxiao
  • Fang, Zhenchang
  • Dong, Xinyu
  • Du, Zhongxuan
  • Deng, Bicai
  • Sun, Chunhua
  • Zhou, Feng
  • Qiao, Xinqi
  • Li, Xinling

Abstract

Copper-based catalysts have demonstrated notable efficacy in facilitating methanol conversion and hydrogen yield at low temperatures. Given the straightforward and cost-effective nature of the process, further investigation into this area is merited. This article provides a summary of the progress made in the development of copper-based catalysts for hydrogen production through methanol steam reforming. The catalytic performance of conventional Cu/ZnO/Al2O3 catalysts can be exceeded by utilizing specific catalyst formulations and preparation procedures, which are characterized by their intricate structural and chemical properties. The studies about MSR mechanism have also been integrated. The realm of DFT research encompasses an examination of the monatomic systems, which have garnered significant attention in contemporary times. Furthermore, this paper presented potential avenues for future research on copper-based catalysts in the context of MSR. We believe that the forthcoming research will concentrate on the design, preparation, and molecular mechanism of copper-based catalysts that exhibit high stability, high activity, and low CO selectivity.

Suggested Citation

  • Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008636
    DOI: 10.1016/j.energy.2024.131091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.