IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v247y2025ics0960148125007165.html
   My bibliography  Save this article

Construction of CuO-ZnO-Al2O3/CeO2 catalyst via the shape effect for methanol steam reforming

Author

Listed:
  • Liao, Moyu
  • Xiang, Ruofei
  • Tan, Xinyu
  • Dai, Zhongxu
  • Qin, Hang
  • Xiao, Hanning

Abstract

CuO-ZnO-Al2O3/CeO2 catalysts based on CeO2 nanocubes (CeO2-NC), nanopolyhedrons (CeO2-NP), and nanorods (CeO2-NR) were synthesized by hydrothermal and incipient impregnation methods, and their catalytic performance in methanol steam reforming was tested. The correlation between the activity data and the physicochemical properties of the catalysts indicated that the micromorphology of the CeO2 support significantly influenced the catalytic performance. The excellent reactivity of CuO-ZnO-Al2O3/CeO2-NR with 100 % methanol conversion rate at 280 °C was attributed to the small particles with large specific surface area, abundant oxygen vacancies and chemisorbed oxygen, superior reducibility and strong methanol adsorption capacity. Meanwhile, the strong interaction between CuO-ZnO-Al2O3 and CeO2-NR greatly improved the catalytic efficiency. Besides, CuO-ZnO-Al2O3/CeO2-NR showed the lowest CO selectivity of 0.41–1.86 % in the range of 230–280 °C and a stability of over 40 h at 280 °C, demonstrating its potential as an excellent catalyst for methanol steam reforming.

Suggested Citation

  • Liao, Moyu & Xiang, Ruofei & Tan, Xinyu & Dai, Zhongxu & Qin, Hang & Xiao, Hanning, 2025. "Construction of CuO-ZnO-Al2O3/CeO2 catalyst via the shape effect for methanol steam reforming," Renewable Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:renene:v:247:y:2025:i:c:s0960148125007165
    DOI: 10.1016/j.renene.2025.123054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhipeng & Lu, Yongheng & Zhang, Weijie & Shu, Riyang & Luo, Xianglong & Song, Qingbin & Lei, Libin & Wang, Chao & Chen, Ying & Ma, Longlong, 2024. "Investigation on the hydrogen production by methanol aqueous phase reforming over Pt/CexMg1-xO2 catalyst: Synergistic effect of support basicity and oxygen vacancies," Renewable Energy, Elsevier, vol. 230(C).
    2. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    3. Xu, Jiawei & Wu, Yuhua & Xiao, Shengying & Wang, Yifei & Xu, Xinhai, 2023. "Synergic effect investigation of carbon monoxide and other compositions on the high temperature proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 211(C), pages 669-680.
    4. Khani, Yasin & Kamyar, Niloofar & Bahadoran, Farzad & Safari, Nasser & Amini, Mostafa M., 2020. "A520 MOF-derived alumina as unique support for hydrogen production from methanol steam reforming: The critical role of support on performance," Renewable Energy, Elsevier, vol. 156(C), pages 1055-1064.
    5. Yin, Yan & Li, Yu & Qin, Yanzhou & Li, Mengjie & Liu, Guokun & Zhang, Junfeng & Zhao, Jian, 2022. "Ex-situ experimental study on dynamic behaviors and detachment characteristics of liquid water in a transparent channel of PEMFC," Renewable Energy, Elsevier, vol. 187(C), pages 1037-1049.
    6. Liu, Shuai & Du, Pengzhu & Jia, Hekun & Zhang, Qiushi & Hao, Liutao, 2024. "Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance," Renewable Energy, Elsevier, vol. 228(C).
    7. Liao, Moyu & Xiang, Ruofei & Zhou, Xinwen & Dai, Zhongxu & Wang, Li & Qin, Hang & Xiao, Hanning, 2024. "Enhancing effect of Mn2+ substitution in CuAl2O4 spinel for methanol steam reforming in a microreactor," Renewable Energy, Elsevier, vol. 230(C).
    8. Zhao, Ning & Wang, Jiangjiang & Tian, Yuyang & Yao, Zibo & Yan, Suying, 2024. "Numerical study on a novel solar-thermal-reaction system for clean hydrogen production of methanol-steam reforming," Renewable Energy, Elsevier, vol. 222(C).
    9. Tian, Jinshu & Ke, Yuzhi & Kong, Guoguo & Tan, Mingwu & Wang, Yong & Lin, Jingdong & Zhou, Wei & Wan, Shaolong, 2017. "A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor," Renewable Energy, Elsevier, vol. 113(C), pages 30-42.
    10. Yu, Yulong & Lv, Shuangyu & Wang, Qiuyu & Xian, Lei & Chen, Lei & Tao, Wen-Quan, 2024. "A two-stage framework for quantifying the impact of operating parameters and optimizing power density and oxygen distribution quality of PEMFC," Renewable Energy, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Moyu & Xiang, Ruofei & Zhou, Xinwen & Dai, Zhongxu & Wang, Li & Qin, Hang & Xiao, Hanning, 2024. "Enhancing effect of Mn2+ substitution in CuAl2O4 spinel for methanol steam reforming in a microreactor," Renewable Energy, Elsevier, vol. 230(C).
    2. Boshagh, Fatemeh & Yoon, Ha-Jun & Lee, Chul-Jin, 2025. "Key parameters influencing steam-reforming performance for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    3. Liu, Shuai & Du, Pengzhu & Jia, Hekun & Zhang, Qiushi & Hao, Liutao, 2024. "Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance," Renewable Energy, Elsevier, vol. 228(C).
    4. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    5. Fajín, José L.C. & Cordeiro, M. Natália D.S., 2024. "Renewable hydrogen production from biomass derivatives or water on trimetallic based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Zhao, Ning & Wang, Jiangjiang & Yang, Jinyu & Yuan, Fuchun, 2024. "Comprehensive evaluation and optimization strategy of solar-driven methanol steam reforming for hydrogen production," Renewable Energy, Elsevier, vol. 232(C).
    7. Oleś, Sylwia & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2025. "Analysis of "green methanol" production from carbon dioxide acquired from negative emission power plants using CFD approach for catalytic reactor," Renewable Energy, Elsevier, vol. 240(C).
    8. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    9. Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
    10. Zhao, Taotao & Fan, Wenxuan & Cui, Hao & Liu, Mingxin & Zheng, Tongxi & Luan, Yang & Su, Xunkang & Liu, Chaozong & Lu, Guolong & Liu, Zhenning, 2025. "3D hybrid-wettability fin channel with dual enhancement of drainage and mass transfer to improve PEMFC performance," Energy, Elsevier, vol. 315(C).
    11. Xie, Lishuai & Zhu, Mengmeng & Jia, Shuo & Cheng, Zhijie & Cen, Yansheng & Zhu, Zhenan & Zheng, Yifeng & Zhang, Xiaobo, 2025. "Microstructure and hydrogen generation performance via hydrolysis of as-cast Mg-Ca-Ni and Mg-Ca-Sn ternary alloys," Renewable Energy, Elsevier, vol. 247(C).
    12. Verducci, Francesco & Grimaldi, Amedeo & Colombo, Elena & Casalegno, Andrea & Baricci, Andrea, 2024. "Dynamic modeling of polymer electrolyte membrane fuel cells under real-world automotive driving cycle with experimental validation on segmented single cell," Renewable Energy, Elsevier, vol. 234(C).
    13. Guo, Yunyu & Jiang, Yuchen & Wang, Lihua & Kong, Linghui & Li, Chao & Zhang, Yangfan & Zhang, Shu & Hu, Xun, 2025. "Activating reaction intermediates in steam reforming with microwave heating for suppressing coke formation," Renewable Energy, Elsevier, vol. 247(C).
    14. Yu, Yulong & Zheng, Qiang & Zhang, Tianyi & Li, Zhengyan & Chen, Lei & Tao, Wen-Quan, 2025. "Forecasting the output performance of PEMFCs via a novel deep learning framework considering varying operating conditions and time scales," Applied Energy, Elsevier, vol. 389(C).
    15. Jiang, Daxin & Lin, Min & Yan, Yuhao & Zhan, Lulu & Li, Rui & Wu, Yulong, 2024. "The influence of CeO2 different morphologies effects on hydrodeoxygenation for guaiacol on Ni/CeO2 catalysts," Renewable Energy, Elsevier, vol. 237(PB).
    16. Lu, Chihua & Li, Chenyu & Liu, Zhien & Li, Yongchao & Zhou, Hui & Zheng, Hao, 2025. "A review on applications of optical visualization technologies for water management in proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    17. Wang, Zhenhua & Feng, Yu & Chen, Fuqiang & Qin, Jiang, 2025. "Thermal behavior of steam reforming reaction at different aspect ratios in the scramjet engine cooling channel," Energy, Elsevier, vol. 314(C).
    18. Yi, Yin & Zhou, Yun & Feng, Donghan & Yin, Wenhang & Li, Hengjie & Yang, Qingliu, 2024. "Stability control and analysis of hydrogen production using a multi-terminal DC EV charging system with PV," Renewable Energy, Elsevier, vol. 234(C).
    19. Fan, Lixin & Liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Comparison and evaluation of mega watts proton exchange membrane fuel cell combined heat and power system under different waste heat recovery methods," Renewable Energy, Elsevier, vol. 210(C), pages 295-305.
    20. Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:247:y:2025:i:c:s0960148125007165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.