Efficiency NiCu/t-zirconia catalysts for methanol steam reforming: Experimental and DFT insights
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131293
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Yishuang & Liang, Defang & Wang, Chunsheng & Chen, Mingqiang & Tang, Zhiyuan & Hu, Jiaxin & Yang, Zhonglian & Zhang, Han & Wang, Jun & Liu, Shaomin, 2020. "Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol," Renewable Energy, Elsevier, vol. 160(C), pages 597-611.
- Atak, Nisa Nur & Dogan, Battal & Yesilyurt, Murat Kadir, 2023. "Investigation of the performance parameters for a PEMFC by thermodynamic analyses: Effects of operating temperature and pressure," Energy, Elsevier, vol. 282(C).
- Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
- Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts," Renewable Energy, Elsevier, vol. 195(C), pages 885-895.
- Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
- Wang, Yadong & Yu, Haoran & Hu, Qing & Huang, Yanpeng & Wang, Ximing & Wang, Yuanhao & Wang, Fenghuan, 2023. "Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst preparation for CO2 hydrogenation to methanol," Renewable Energy, Elsevier, vol. 202(C), pages 834-843.
More about this item
Keywords
Methanol steam reforming; Hydrogen production; Copper-based catalyst; ZrO2; DFT;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010661. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.