IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43679-0.html
   My bibliography  Save this article

Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming

Author

Listed:
  • Hao Meng

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Yusen Yang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Tianyao Shen

    (Beijing University of Chemical Technology)

  • Zhiming Yin

    (Beijing University of Chemical Technology)

  • Lei Wang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Wei Liu

    (Beijing University of Chemical Technology)

  • Pan Yin

    (Beijing University of Chemical Technology)

  • Zhen Ren

    (Beijing University of Chemical Technology)

  • Lirong Zheng

    (Chinese Academy of Sciences)

  • Jian Zhang

    (Beijing University of Chemical Technology)

  • Feng-Shou Xiao

    (Beijing University of Chemical Technology
    Zhejiang University)

  • Min Wei

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

Abstract

Copper-based catalysts serve as the predominant methanol steam reforming material although several fundamental issues remain ambiguous such as the identity of active center and the aspects of reaction mechanism. Herein, we prepare Cu/Cu(Al)Ox catalysts with amorphous alumina-stabilized Cu2O adjoining Cu nanoparticle to provide Cu0−Cu+ sites. The optimized catalyst exhibits 99.5% CH3OH conversion with a corresponding H2 production rate of 110.8 μmol s−1 gcat−1 with stability over 300 h at 240 °C. A binary function correlation between the CH3OH reaction rate and surface concentrations of Cu0 and Cu+ is established based on kinetic studies. Intrinsic active sites in the catalyst are investigated with in situ spectroscopy characterization and theoretical calculations. Namely, we find that important oxygen-containing intermediates (CH3O* and HCOO*) adsorb at Cu0−Cu+ sites with a moderate adsorption strength, which promotes electron transfer from the catalyst to surface species and significantly reduces the reaction barrier of the C−H bond cleavage in CH3O* and HCOO* intermediates.

Suggested Citation

  • Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43679-0
    DOI: 10.1038/s41467-023-43679-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43679-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43679-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Zhang & Xuanye Chen & Jincan Kang & Zongyou Yu & Jie Tian & Zhongmiao Gong & Aiping Jia & Rui You & Kun Qian & Shun He & Botao Teng & Yi Cui & Ye Wang & Wenhua Zhang & Weixin Huang, 2021. "The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Núria J. Divins & David Kordus & Janis Timoshenko & Ilya Sinev & Ioannis Zegkinoglou & Arno Bergmann & See Wee Chee & Simon Widrinna & Osman Karslıoğlu & Hemma Mistry & Mauricio Lopez Luna & Jian Qian, 2021. "Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Jiafeng Yu & Xingtao Sun & Xin Tong & Jixin Zhang & Jie Li & Shiyan Li & Yuefeng Liu & Noritatsu Tsubaki & Takayuki Abe & Jian Sun, 2021. "Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Hao-Xin Liu & Shan-Qing Li & Wei-Wei Wang & Wen-Zhu Yu & Wu-Jun Zhang & Chao Ma & Chun-Jiang Jia, 2022. "Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Lili Lin & Wu Zhou & Rui Gao & Siyu Yao & Xiao Zhang & Wenqian Xu & Shijian Zheng & Zheng Jiang & Qiaolin Yu & Yong-Wang Li & Chuan Shi & Xiao-Dong Wen & Ding Ma, 2017. "Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts," Nature, Nature, vol. 544(7648), pages 80-83, April.
    7. Xiao Zhang & Mengtao Zhang & Yuchen Deng & Mingquan Xu & Luca Artiglia & Wen Wen & Rui Gao & Bingbing Chen & Siyu Yao & Xiaochen Zhang & Mi Peng & Jie Yan & Aowen Li & Zheng Jiang & Xingyu Gao & Sufen, 2021. "A stable low-temperature H2-production catalyst by crowding Pt on α-MoC," Nature, Nature, vol. 589(7842), pages 396-401, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    5. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Bing Deng & Zhe Wang & Weiyin Chen & John Tianci Li & Duy Xuan Luong & Robert A. Carter & Guanhui Gao & Boris I. Yakobson & Yufeng Zhao & James M. Tour, 2022. "Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    8. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    9. Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    12. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    13. Núria. J. Divins & Andrea Braga & Xavier Vendrell & Isabel Serrano & Xènia Garcia & Lluís Soler & Ilaria Lucentini & Maila Danielis & Andrea Mussio & Sara Colussi & Ignacio J. Villar-Garcia & Carlos E, 2022. "Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    16. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    18. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43679-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.